Abstract:
A bend information computation apparatus is to compute bend information representing a direction and a magnitude of bend of a target group including targets disposed at an identical position along a light guide. Each target modulates the intensity of guided light in accordance with the direction and magnitude of bend. The apparatus includes an input unit to be input detected light quantity information corresponding to each target, a storage to store a bend coefficient and intensity modulation information of each target, and a light quantity information relationship between the bend coefficient and intensity modulation information and the detected light quantity information, a first arithmetic operator to calculate light quantity variation information of each target, based on the detected light quantity information and light quantity information relationship, and a second arithmetic operator to calculate the bend information of the target group, based on the light quantity variation information and bend coefficient.
Abstract:
A relative position detecting system of a tubular device includes a shape sensor and a relative position detecting section. The shape sensor is configured to detect a shape of the tubular device to be inserted into a tubular cavity of an object. The relative position detecting section is configured to detect a relative positional relation between at least one position in a first range in which the shape of the tubular device is detectable by the shape sensor and at least one position in the tubular cavity.
Abstract:
An inserting state acquiring section is configured to acquire inserting state information of an inserting section that is to be inserted into an insertion subject, an insertion subject shape acquiring section is configured to acquire insertion subject shape information that is shape information of the insertion subject, and a positional relation calculating section is configured to be input the inserting state information and the insertion subject shape information and to calculate a positional relation of the inserting section to the insertion subject. When an output section outputs the calculation result of the positional relation calculating section, a control section is configured to control an output state of the calculation result in the output section.
Abstract:
A relative position information acquiring section acquires relative position information, in relation to an insertion subject, of a portion of an inserting section which becomes a position detection object. An image acquisition position calculating section calculates an image acquisition position that is at least one of an image acquisition region, a part of the image acquisition region and a point in the image acquisition region, by use of the relative position and shape information of the insertion subject. A display calculating section sets a display format on the basis of weighting information of the image acquisition position calculated on the basis of a weighting index parameter. An output section outputs the display format and the image acquisition position.
Abstract:
An optical sensor includes a light source, a characteristic light-guiding member, a characteristic changing part which changes the optical characteristic of light, and a detecting unit which detects the light having the optical characteristic changed by the characteristic changing part and guided by the characteristic light-guiding member. The optical sensor includes a control member which inhibits at least the twisting of the characteristic light-guiding member, and controls a bending state of the characteristic light-guiding member, and a positioning mechanism which positions the characteristic changing part with respect to at least a circumferential direction of the characteristic light-guiding member.
Abstract:
An optical sensor has a light source, a characteristic light-guiding member, a characteristic changing part, a detecting unit, and an optical connecting unit. The optical connecting unit has a light branching unit configured to branch the light emitted from the light source to the characteristic light-guiding member, and branches the light guided by the characteristic light-guiding member to the detecting unit.
Abstract:
A tubular insertion system includes an insertion unit including a bendable portion, a bending operation mechanism that operates the bendable portion. The tubular insertion system further includes a bending operation amount detection/calculation device that calculates bending operation amount information, a bent shape detection/calculation device that calculates bent shape information, and a first operation support information acquisition unit that acquires first operation support information based on at least one of the bending operation amount information and the bent shape information.
Abstract:
An endoscopic examination supporting apparatus includes at least one processor including hardware. The processor acquires insertion shape information indicating an insertion shape of an insertion section of an endoscope inserted into a subject, evaluates, based on the insertion shape information, a procedure including inserting operation for the insertion section performed by a user who operates the endoscope during an endoscopic examination, and generates procedure evaluation information.
Abstract:
The insertion unit support system is provided for a tubular insertion system, and generates lumen information including the shape and location of a lumen based on the pre-acquired information about the lumen of a subject as an observation target that includes image information of two- or higher dimensional images, i.e., three-dimensional images or three-dimensional tomograms, so that the lumen information is used as support information for inserting the insertion unit of an endoscope. The lumens of the subjects targeted for the support of the insertion unit support system may vary in shape and location, and are deformed according to the shape of an inserted insertion unit. Thus, the support information is corrected and updated based on the deformation.
Abstract:
A shape calculating apparatus includes a light source, an optical fiber provided with detection targets. The detection targets have mutually different light absorption spectra to decrease a quantity of light propagated by the fiber in accordance with a bend shape of the fiber. The apparatus also includes a light detector to detect light quantity information at wavelengths included in the light absorption spectra, a calculator to execute a calculation relating to a shape of each detection target based on the light quantity information. The apparatus further includes a setting change unit to change, with respect to each of the wavelengths, a dynamic range of at least either an intensity of light input to the optical fiber or an electric signal generated by the detector.