Abstract:
A space-efficient PCB-mountable image sensor includes a semiconductor substrate having a top surface and a side surface, a bond pad on the top surface, and a conductive layer formed on the side surface and electrically connected to the bond pad. A camera module includes a PCB and a space-efficient PCB-mountable image sensor. A conductive layer of the PCB-mountable image sensor is electrically connected between the bond pad and a contact pad of the PCB. A method for fabricating a space-efficient PCB-mountable image sensor includes forming a trench next to an image sensor on a first side of an image sensor wafer, the image sensor including a bond pad. The method also includes forming a conductive layer spanning the bond pad and at least part of a side wall of the trench, and singulating the image sensor wafer along the trench.
Abstract:
A cavity interposer has a cavity, first bondpads adapted to couple to a chip-type camera cube disposed within a base of the cavity at a first level, the first bondpads coupled through feedthroughs to second bondpads at a base of the interposer at a second level; and third bondpads adapted to couple to a light-emitting diode (LED), the third bondpads at a third level. The third bondpads coupled to fourth bondpads at the base of the interposer at the second level; and the second and fourth bondpads couple to conductors of a cable with the first, second, and third level different. An endoscope optical includes the cavity interposer an LED, and a chip-type camera cube electrically bonded to the first bondpads; the LED is bonded to the third bondpads; and a top of the chip-type camera cube and a top of the LED are at a same level.
Abstract:
An image sensor module comprises an image sensor having a light sensing area, a cover glass for covering the light sensing area, a dam between the image sensor and the cover glass, which surrounds the light sensing area, and has an outer wall and an inner wall, where a cross-section of the inner wall parallel to the surface of the light sensing area of the image sensor forms a sawtooth pattern and/or, where a cross-section of the inner wall orthogonal to the surface of the light sensing area of the image sensor forms an inclined surface.
Abstract:
A method of image sensor package fabrication includes forming a recess in a transparent substrate, depositing conductive traces in the recess, inserting an image sensor in the recess so that the image sensor is positioned in the recess to receive light through the transparent substrate, and inserting a circuit board in the recess so that the image sensor is positioned between the transparent substrate and the circuit board.
Abstract:
An image sensor package, comprising a silicon substrate; an image sensor pixel array that is formed on the silicon substrate; a peripheral circuit region that is formed around the image sensor pixel array on the silicon substrate; a redistribution layer (RDL) that is electrically coupled to the peripheral circuit region; at least one solder ball that is electrically coupled to the RDL; and a cover glass that is coupled to the RDL. No part of the RDL is located directly above or below the image sensor pixel array. No part of the at least one solder ball is located directly above or below the silicon substrate. A dark material layer is implemented to prevent an edge flare effect of the image sensor pixel array.
Abstract:
An optical element comprising a transparent substrate and an anti-reflective coating, wherein the anti-reflective coating further comprises at least a transparent, high refractive index layer and a transparent, low refractive index layer, wherein the high refractive index layer is in contact with the low refractive index layer; and wherein the high refractive index layer is situated at an interface between the anti-reflective coating and air. Further, the low refractive index layer may be silicon oxide; the high refractive index layer may be tantalum oxide or silicon nitride.
Abstract:
An image sensor package includes a ceramic substrate with a cavity disposed in the ceramic substrate. A glass layer is adhered to the ceramic substrate and encloses the cavity in the ceramic substrate. An image sensor is disposed in the cavity between the glass layer and the ceramic substrate to electrically isolate the image sensor. An image sensor processor is disposed in the cavity and electrically coupled to the image sensor to receive image data from the image sensor.
Abstract:
A method for manufacturing one or more curved image sensor systems includes (a) at elevated pressure relative to atmospheric pressure, bonding a light-transmitting substrate to an image sensor wafer having at least one pixel array, to form a composite wafer with a respective hermetically sealed cavity between the light-transmitting substrate and each pixel array, and (b) thinning the image sensor wafer of the composite wafer to induce deformation of the image sensor wafer to form a concavely curved pixel array from each pixel array. A curved image sensor system includes (a) an image sensor substrate having a concave light-receiving surface and a pixel array located along the concave light-receiving surface, (b) a light-transmitting substrate bonded to the image sensor substrate by a bonding layer, and (c) a hermetically sealed cavity, bounded at least by the concave light-receiving surface, the light-transmitting substrate, and the bonding layer.
Abstract:
A device-embedded image sensor includes an image sensor formed in a first semiconductor substrate; a top conductive pad formed on a top surface of the first semiconductor substrate; and a semiconductor device formed in a second semiconductor substrate bonded to a bottom surface of the first semiconductor substrate, the semiconductor device electrically connected to the top conductive pad. A method for fabricating a device-embedded image sensor from a CMOS image sensor wafer assembly that includes an image sensor and a conductive pad. The method includes exposing the conductive pad; forming an isolation layer; exposing a surface of each conductive pad; forming a patterned redistribution layer (RDL) having a plurality of RDL elements on the isolation layer; electrically isolating adjacent RDL elements; and laminating the CMOS image sensor wafer assembly and a semiconductor device wafer to form undiced device-embedded image sensors.
Abstract:
An image sensor includes a photosensing element for receiving infrared (IR) radiation and detecting the IR radiation and generating an electrical signal indicative of the IR radiation. A redistribution layer (RDL) is disposed under the photosensing element, the RDL comprising pattern of conductors for receiving the electrical signal. An IR reflection layer, an IR absorption layer or an isolation layer is disposed between the photosensing element and the RDL. The IR reflection layer, IR absorption layer or isolation layer provides a barrier to IR radiation such that the IR radiation does not impinge upon the RDL. As a result, a ghost image of the RDL is not generated, resulting in reduced noise and improved sensitivity and performance of the image sensor.