Abstract:
An image sensor module comprises an image sensor having a light sensing area, a cover glass for covering the light sensing area, a dam between the image sensor and the cover glass, which surrounds the light sensing area, and has an outer wall and an inner wall, where a cross-section of the inner wall parallel to the surface of the light sensing area of the image sensor forms a sawtooth pattern and/or, where a cross-section of the inner wall orthogonal to the surface of the light sensing area of the image sensor forms an inclined surface.
Abstract:
An active-pixel device assembly with stray-light reduction includes an active-pixel device including a semiconductor substrate and an array of active pixels, a light-transmissive substrate disposed on a light-receiving side of the active-pixel device, and a rough opaque coating disposed on a first surface of the light-transmissive substrate and forming an aperture aligned with the array of active pixels, wherein the rough opaque coating is rough so as to suppress reflection of light incident thereon from at least one side. A method for manufacturing a stray-light-reducing coating for an active-pixel device assembly includes depositing an opaque coating on a light-transmissive substrate such that the opaque coating forms a light-transmissive aperture, and roughening the opaque coating to form a rough opaque coating, said roughening including treating the opaque coating with an alkaline solution.
Abstract:
A novel endoscope includes a camera module, an electrical cable, and an electrical connector. The camera module includes an analog image signal output terminal. The cable includes an analog image signal line having a first end connected to the analog image signal output terminal of the camera module. The electrical connector includes a set of electrical contacts configured to engage a complimentary set of electrical contacts of a host system. The set of electrical contacts includes at least an analog image signal contact connected to a second end of the analog image signal line of the cable.
Abstract:
An image sensor package includes a transparent substrate with a recess formed in the transparent substrate, and an image sensor positioned in the recess so that light incident on the transparent substrate passes through the transparent substrate to the image sensor. The image sensor package also includes a circuit board electrically disposed in the recess and coupled to receive image data from the image sensor, and the image sensor is positioned in the recess between the circuit board and the transparent substrate.
Abstract:
An optical element comprising a transparent substrate and an anti-reflective coating, wherein the anti-reflective coating further comprises at least a transparent, high refractive index layer and a transparent, low refractive index layer, wherein the high refractive index layer is in contact with the low refractive index layer; and wherein the high refractive index layer is situated at an interface between the anti-reflective coating and air. Further, the low refractive index layer may be silicon oxide; the high refractive index layer may be tantalum oxide or silicon nitride.
Abstract:
An image sensor module comprises: a substrate having a first side and second side, the first side being an opposite of the second side, an image sensor attached to the first side of the substrate, bonding wires to bond the image sensor to pads on the first side of the substrate, a protective structure disposed on the first side of the substrate surrounding the image sensor, the bonding wires, and the pads, the protective structure having a dam and a lid, a cover glass disposed on the protective structure, and a set of solder balls attached to the second side of the substrate.
Abstract:
A cover-glass-free array camera with individually light-shielded cameras includes an image sensor array having a plurality of photosensitive pixel arrays formed in a silicon substrate, and a lens array bonded to the silicon substrate, wherein the lens array includes (a) a plurality of imaging objectives respectively registered to the photosensitive pixel arrays to form respective individual cameras therewith, and (b) a first opaque material between each of the imaging objectives to prevent crosstalk between individual cameras.
Abstract:
A curved image sensor system includes (a) an image sensor substrate having a concave light-receiving surface, a pixel array located along the concave light-receiving surface, and a planar external surface facing away from the concave light-receiving surface, (b) a light-transmitting substrate bonded to the image sensor substrate by a bonding layer, and (c) a hermetically sealed cavity, bounded at least by the concave light-receiving surface, the light-transmitting substrate, and the bonding layer.
Abstract:
An apparatus includes a substrate having a surface and a plurality of solder balls arranged on the surface to form a ball grid array. A portion of the plurality of solder balls is arranged to have a pitch between adjacent solder balls. The adjacent solder balls having the pitch have a shape of a truncated sphere. At least one solder ball of the plurality of solder balls is included in a solder island on the surface having a shape that is different than the shape of the truncated sphere.
Abstract:
A probe card for use in testing a wafer and a method of making the probe card include a printed circuit board (PCB) formed with a conductor pattern and a probe head in proximity to the PCB, the probe head defining at least one hole through the probe head, and the probe head being made of an electrically insulating material. At least one conductive pogo pin is disposed respectively in the at least one hole, the pogo pin having a first end electrically connected to the conductor pattern on the PCB. At least one conductive probe pin includes a cantilever portion and a tip portion. The cantilever portion is in contact with and electrically connected to a second end of the pogo pin, and the tip portion is electrically connectable to the wafer to electrically connect the wafer to the conductor pattern on the PCB. The cantilever portion of the probe pin is fixedly attached to the probe head.