Abstract:
An optoelectronic device comprises a layer stack, which includes a carrier layer, a cover layer, and a first layer. The first layer is in particular an intermediate layer, arranged between the cover layer and the carrier layer. At least one electronic or optoelectronic element, in particular an optoelectronic light source, is arranged on the first layer and at least one layer of the layer stack and preferably all layers of the layer stack are at least partially transparent. The layer stack comprises at least one layer which comprises particles with a high thermal conductivity and/or at least one thermally conductive layer which is arranged between two adjacent layers of the layer stack.
Abstract:
An optoelectronic semiconductor component comprising a connection carrier with a mounting face and an electrically insulating base member. An optoelectronic semiconductor chip is arranged on the mounting face of the connection carrier. A radiation-transmissive body having four side faces is provided. The radiation-transmissive body surrounds the semiconductor chip in such a way that the radiation-transmissive body envelops outer faces of the optoelectronic semiconductor chip not facing the connection carrier in form-fitting manner. The radiation-transmissive body comprises at least one side face which extends at least in places at an angle of between 60° and 70° to the mounting face. The base member has a thickness which amounts to at most 250 μm.
Abstract:
A radiation-emitting semiconductor arrangement includes at least one semiconductor body having an active region that generates a primary radiation, and includes a radiation conversion element, wherein the radiation conversion element converts the primary radiation at least partially into a secondary radiation during operation of the semiconductor arrangement, the radiation conversion element emits the secondary radiation at a narrow angle, the radiation conversion element emits the secondary radiation into a projected spatial angle of not more than π/5, and the semiconductor arrangement includes an optical deflector movable during operation of the semiconductor arrangement.
Abstract:
An optoelectronic lighting apparatus includes a reflector having a reflector face, an optical component arranged at a distance from the reflector face and opposite the reflector face, and a light-emitting component arranged on the reflector face and having a light-emitting face, wherein the optical component has a plurality of differently configured reflection elements for reflection, in a direction of the reflector face, of electromagnetic radiation emitted by the light-emitting face.
Abstract:
Described is a holographic film (100) whose transmission and/or reflection properties vary periodically along at least one of its directions of principal extent, said film being designed for at least partial transmission (22, 28) of light (20, 26) of at least one first wavelength range that is irradiated from a multiplicity of periodically disposed illuminants (200) and that impinges on the holographic film (100). Also described are a lighting means (300), a backlighting means and a method for producing a holographic film (100).
Abstract:
In a method, a spectral performance of the electromagnetic radiation is chosen in such a way that an integral of the spectral performance across a wave length interval between 380 nm and 780 nm has a nominal value, an integral of the spectral performance across a wave length interval between 420 nm and 460 nm has a first value, an integral of the spectral performance across a wave length interval between 510 nm and 550 nm has a second value, and an integral of the spectral performance across a wave length interval between 580 nm and 620 nm has a third value. The ratios of these values are chosen to be within certain ranges.
Abstract:
A light-emitting diode includes at least one light-emitting diode chip, a carrier for the at least one light-emitting diode chip, and at least one control device integrated into the carrier, wherein each of the light-emitting diode chips is electrically connected to one of the at least one control devices, each of the at least one control devices includes a data storage device in which brightness data for each light-emitting diode chip which is connected to the control device is stored, and the control device drives the connected light-emitting diode chip with a current which is selected according to stored brightness data for the light-emitting diode chip.
Abstract:
An optoelectronic device, in particular an at least partially transparent pane for example of a vehicle, comprises a first layer, in particular an intermediate layer arranged between a cover layer and a carrier layer, at least one electronic or optoelectronic component, which is at least partially or completely embedded in the first layer and at least one structured conductor layer. A first portion of the conductor layer is arranged on an upper surface of the first layer and a second portion of the conductor layer is arranged on a top surface of the electronic or optoelectronic component and is in contact with an electric contact of the electronic or optoelectronic component. The electric contact, in particular a contact pad, is arranged on the top surface.
Abstract:
An optoelectronic device comprises a plurality of optoelectronic light sources being arranged on a first layer, in particular an intermediate layer being arranged between a cover layer and a carrier layer. The first layer comprises or consists of an at least partially transparent material and each optoelectronic light source of the plurality of optoelectronic light sources comprises an individual light converter for converting light emitted by the associated light source into converted light. The light converter of each optoelectronic light source is arranged on the first layer and/or the associated optoelectronic light source.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.