Abstract:
Methods and apparatuses are described that facilitate data communication between a first slave device and a second slave device across a serial bus interface. In one configuration, a master device receives, from a first slave device, a request to send a masked-write datagram to a second slave device via a bus, wherein the masked-write datagram is addressed to a radio frequency front end (RFFE) register of the second slave device. The masked-write datagram includes a mask field identifying at least one bit to be changed in the RFFE register and a data field providing a value of the at least one bit to be changed in the RFFE register. The master device detects whether the first slave device is authorized to send the masked-write datagram to the second slave device and permits the first slave device to send the masked-write datagram to the second slave device if authorization is detected.
Abstract:
A modified serial peripheral interface (SPI) is provided in each of a master device and a plurality of slave devices that does not use a slave select line. The master device may thus engage in full-duplex serial communication with each slave device through an SPI MOSI line, an SPI MISO line, and an SPI clock line.
Abstract:
Methods and apparatuses are described that facilitate data communication across a serial bus. In one configuration, a transmitter configures a plurality of devices by assigning one or more trigger registers to each device of the plurality of devices and sends to each device a trigger register assignment command indicating a trigger register assigned to a device and identifying a trigger corresponding to the device. The transmitter then addresses a packet to an assigned trigger register and generates a bit-index field in the packet. Bits in the bit-index field respectively represent triggers corresponding to devices associated with the assigned trigger register, wherein each bit indicates whether one or more corresponding devices are enabled for operation. The transmitter then sends the packet to the plurality of devices via the serial bus.
Abstract:
Techniques for acquiring Global Navigation Satellite System (GNSS) signals at a mobile device are provided. An example process according to these techniques includes receiving sensor data from at least one sensor of the mobile device, determining one or more blocked zones based on the sensor data in which at least a portion of signals from at least one space vehicle (SV) are blocked by an obstruction, selecting one or more SVs from SV information based on the one or more blocked zones, and attempting to acquire signals from the one or more SVs.
Abstract:
Embodiments include systems and methods for managing radio frequency (RF) spectrum usage by a processor of a wireless network node. The processor may scan one or more frequencies to determine a spectrum usage. The processor may identify one or more high priority devices based on the scanning The processor may determine a maximum RF interference threshold of the one or more high priority devices based on the spectrum usage and the identification of the one or more high priority devices. The processor may calculate a transmit power for one or more wireless network nodes based on the determined maximum RF interference threshold, and the processor may transmit a signal at or below the calculated transmit power.
Abstract:
Techniques are described for tunneling high definition multimedia interface (HDMI) data over a wireless connection from an HDMI-capable source device to a client device that is physically connected to an HDMI-capable sink device via an HDMI connector. The techniques enable wireless transmission of HDMI data without video compression by using an encapsulation scheme that maps HDMI audio and video channels into a transport stream format and maps HDMI side channels into an IP datagram for transmission over the wireless connection. The source device may operate as an HDMI controller and perform HDMI-based data, control, and security processing required for HDMI connectivity with the sink device via the client device. The client device, therefore, may be a “dummy” client device that does not perform HDMI-based processing, but acts as a wireless HDMI bridge to pass the HDMI data between the source device and the sink device.
Abstract:
The disclosure generally relates to negotiating a best device-to-device (D2D) radio access technology (RAT) to use in a D2D connection. In particular, two wireless devices that correspond to potential D2D peers may exchange respective radio configurations according to a D2D coexistence protocol to mutually negotiate the “best” RAT to use in the D2D connection, wherein the exchanged radio configurations may comprise at least radio capabilities and coexistence states (e.g., in-device and/or cross-device coexistence states) associated with the respective wireless devices. The potential D2D peers may then negotiate one or more compatible RATs that are available to use in the D2D connection according to at least the radio capabilities and the in-device and cross-device coexistence states exchanged therebetween. As such, the two wireless devices may then establish one or more D2D connections using the negotiated compatible RAT(s).
Abstract:
Systems, methods, and apparatus for implementing hardware flow control between devices coupled through a serial peripheral interface. A method for transmitting information using a serial peripheral interface includes initiating an exchange of data over one or more data lines of a serial peripheral interface bus by asserting a first voltage state on a slave select line, transmitting data and clock signals over the serial peripheral interface bus while the slave select line remains at the first voltage state, refraining from transmitting data and clock signals over the serial peripheral interface bus when the slave select line transitions to a second first voltage state, receiving data at a slave device into a receive buffer while the slave select line remains at the first voltage state, and asserting the second voltage state on the slave select line when occupancy of the receive buffer reaches or exceeds a threshold occupancy level.
Abstract:
Systems and methods for providing power savings and interference mitigation on physical transmission media are disclosed. Exemplary aspects include the ability to change physical layer (PHY) configurations based on operating conditions. By changing the PHY configuration, power consumption and electromagnetic interference (EMI) may be reduced. Still other operating conditions may be used to initiate switching between different PHYs. In another exemplary aspect, parameters of the PHY, such as slew rate, may be modified based on operating conditions to save power and/or reduce interference.
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Each device can contend for control of a communications link by driving a data signal to a first voltage level. If the data signal or a clock signal changes before an arbitration time period has elapsed, one or more devices yield control of the communications link to another contender. The arbitration time period for each contender is different and indicates a priority of the message to be transmitted. A shorter arbitration time period indicates higher priority. Arbitration may commence after clock and data signals of the communications link remain in an idle or other predefined state for a minimum idle time. The minimum idle time may be different for different nodes and may be shorter for high priority messages or nodes.