SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

    公开(公告)号:US20200161445A1

    公开(公告)日:2020-05-21

    申请号:US16597600

    申请日:2019-10-09

    Abstract: An n-type epitaxial layer is formed on an n-type semiconductor substrate made of silicon carbide. p-type body regions are formed in the epitaxial layer, and n-type source region is formed in the body region. On the body region between the source region and the epitaxial layer, a gate electrode is formed via a gate dielectric film, and an interlayer insulating film having an opening is formed so as to cover the gate electrode. A source electrode electrically connected to the source region and the body regions is formed in the opening. A recombination layer is formed between the body region and a basal plane dislocation is a layer having point defect density higher than that of the epitaxial layer located directly under the recombination layer or having a metal added to the epitaxial layer.

    NORMALLY-OFF POWER JFET AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20130334542A1

    公开(公告)日:2013-12-19

    申请号:US13970586

    申请日:2013-08-19

    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.

    SEMICONDUCTOR DEVICE
    15.
    发明申请

    公开(公告)号:US20210135018A1

    公开(公告)日:2021-05-06

    申请号:US17121143

    申请日:2020-12-14

    Abstract: In a Schottky barrier diode region, a Schottky barrier diode is formed between an n-type drift layer and a metal layer, and in a body diode region, a p-type semiconductor region, a p-type semiconductor region, and a p-type semiconductor region are formed in order from a main surface side in the drift layer, and a body diode is formed between the p-type semiconductor region and the drift layer. An impurity concentration of the p-type semiconductor region is decreased lower than the impurity concentration of the p-type semiconductor regions, thereby increasing the reflux current flowing through the Schottky barrier diode and preventing the reflux current from flowing through the body diode.

    SEMICONDUCTOR DEVICE
    16.
    发明申请

    公开(公告)号:US20200161480A1

    公开(公告)日:2020-05-21

    申请号:US16598832

    申请日:2019-10-10

    Abstract: In a Schottky barrier diode region, a Schottky barrier diode is formed between an n-type drift layer and a metal layer, and in a body diode region, a p-type semiconductor region, a p-type semiconductor region, and a p-type semiconductor region are formed in order from a main surface side in the drift layer, and a body diode is formed between the p-type semiconductor region and the drift layer. An impurity concentration of the p-type semiconductor region is decreased lower than the impurity concentration of the p-type semiconductor regions, thereby increasing the reflux current flowing through the Schottky barrier diode and preventing the reflux current from flowing through the body diode.

Patent Agency Ranking