Abstract:
An n-type epitaxial layer is formed on an n-type semiconductor substrate made of silicon carbide. p-type body regions are formed in the epitaxial layer, and n-type source region is formed in the body region. On the body region between the source region and the epitaxial layer, a gate electrode is formed via a gate dielectric film, and an interlayer insulating film having an opening is formed so as to cover the gate electrode. A source electrode electrically connected to the source region and the body regions is formed in the opening. A recombination layer is formed between the body region and a basal plane dislocation is a layer having point defect density higher than that of the epitaxial layer located directly under the recombination layer or having a metal added to the epitaxial layer.
Abstract:
A drift layer is formed over a semiconductor substrate which is an SiC substrate. The drift layer includes first to third n-type semiconductor layers and a p-type impurity region. Herein, an impurity concentration of the second n-type semiconductor layer is higher than an impurity concentration of the first n-type semiconductor layer and an impurity concentration of the third n-type semiconductor layer. Also, in plan view, the second semiconductor layer located between the p-type impurity regions adjacent to each other overlaps with at least a part of a gate electrode formed in a trench.
Abstract:
To improve characteristics of a semiconductor device. A first p-type semiconductor region having an impurity of a conductivity type opposite from that of a drift layer is arranged in the drift layer below a trench, and a second p-type semiconductor region is further arranged that is spaced at a distance from a region where the trench is formed as seen from above and that has the impurity of the conductivity type opposite from that of the drift layer. The second p-type semiconductor region is configured by a plurality of regions arranged at a space in a Y direction (depth direction in the drawings). Thus, it is possible to reduce the specific on-resistance while maintaining the breakdown voltage of the gate insulating film by providing the first and second p-type semiconductor regions and further by arranging the second p-type semiconductor region spaced by the space.
Abstract:
In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
Abstract:
In a Schottky barrier diode region, a Schottky barrier diode is formed between an n-type drift layer and a metal layer, and in a body diode region, a p-type semiconductor region, a p-type semiconductor region, and a p-type semiconductor region are formed in order from a main surface side in the drift layer, and a body diode is formed between the p-type semiconductor region and the drift layer. An impurity concentration of the p-type semiconductor region is decreased lower than the impurity concentration of the p-type semiconductor regions, thereby increasing the reflux current flowing through the Schottky barrier diode and preventing the reflux current from flowing through the body diode.
Abstract:
In a Schottky barrier diode region, a Schottky barrier diode is formed between an n-type drift layer and a metal layer, and in a body diode region, a p-type semiconductor region, a p-type semiconductor region, and a p-type semiconductor region are formed in order from a main surface side in the drift layer, and a body diode is formed between the p-type semiconductor region and the drift layer. An impurity concentration of the p-type semiconductor region is decreased lower than the impurity concentration of the p-type semiconductor regions, thereby increasing the reflux current flowing through the Schottky barrier diode and preventing the reflux current from flowing through the body diode.
Abstract:
A semiconductor device has an FET of a trench-gate structure obtained by disposing a conductive layer, which will be a gate, in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate. The conductive layer of the trench gate is formed to have a substantially flat or concave upper surface and the upper surface is formed equal to or higher than the main surface of the semiconductor substrate. After etching of the semiconductor substrate to form the upper surface of the conductive layer of the trench gate, a channel region and a source region are formed by ion implantation so that the semiconductor device is free from occurrence of a source offset.
Abstract:
In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
Abstract:
In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
Abstract:
A semiconductor device has an FET of a trench-gate structure obtained by disposing a conductive layer, which will be a gate, in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate. The conductive layer of the trench gate is formed to have a substantially flat or concave upper surface and the upper surface is formed equal to or higher than the main surface of the semiconductor substrate. After etching of the semiconductor substrate to form the upper surface of the conductive layer of the trench gate, a channel region and a source region are formed by ion implantation so that the semiconductor device is free from occurrence of a source offset.