Abstract:
A bearing sleeve for a holder, which is used for fastening a fuel distributor on an add-on structure, includes a first sleeve part and a second sleeve part. The first sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the first sleeve part. The second sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the second sleeve part.
Abstract:
A bearing bush is for a holder, which is for fastening a component, particularly of a fuel distributor, to an add-on structure. The bearing bush has an inner bush part, which is made of a metallic material, and an outer bush part, which is made of a metallic material, and an elastically deformable damping element. The outer bush part has a continuous recess, in which the inner bush part is situated. The damping element is situated between the inner bush part and the outer bush part. A holder having such a bearing bush is also specified. In addition, a fuel-injection system having a fuel distributor and at least one holder is specified, which is used for fastening the fuel distributor on an internal combustion engine.
Abstract:
In a fuel system of an internal combustion engine, fuel is delivered by a high-pressure pump into a fuel rail. The quantity of the delivered fuel is influenced by a quantity control valve (30) actuated by an electromagnetic actuating device. A limit-value retaining current is ascertained, at which the quantity control valve still remains in its closed state or is just opening.
Abstract:
In a method for actuating a switch element of a valve device between a first end position and a second end position, in a normal mode within a cycle following an end of a first energization, a movement of the switch element in a first direction effected by the loading device is retarded in a first direction by a brief second energization (“braking pulse”) that is introduced within the cycle once a pause period has ended following a characteristic point in time. It is provided that the optimum pause period and/or the optimum variable characterizing the braking pulse be ascertained in an adaptation mode.
Abstract:
In a fuel system of an internal combustion engine, fuel is delivered by a high-pressure pump into a fuel rail. The quantity of the delivered fuel is influenced by a quantity control valve (30) actuated by an electromagnetic actuating device. A limit-value retaining current is ascertained, at which the quantity control valve still remains in its closed state or is just opening.
Abstract:
A valve device includes a housing, a flow duct and a valve body. The valve body is arranged in the flow duct and has a sealing section that bears against a housing-side sealing seat when the valve device is closed. The sealing section and the sealing seat together form a sealing region. There is a collapse zone immediately upstream of the sealing region in the flow duct when the valve device is closed. The collapse zone is delimited by a boundary wall that is at least substantially perpendicular with respect to a movement axis of the valve body and by a deflector wall that is arranged at an angle with respect to the boundary wall. The boundary wall is longer than the deflector wall.
Abstract:
A method for operating a fuel system for an internal combustion engine having a metering device, an electrical actuating device, and a valve element includes: activating the electrical actuating device in at least one first cycle in such a way that the valve element switches into a second position corresponding to an open metering device; activating the electrical actuating device in at least one second cycle in such a way that the electrical actuating device is activated from activation to activation, with activation energy which decreases gradually, until a limiting case is reached in which the valve element only just or just no longer switches into the second position; ascertaining a first activation energy, which corresponds to the limiting case; and subsequently activating the actuating device, taking the first activation energy into account.
Abstract:
A system, which in particular is used as a fuel injection system for high-pressure injection in internal combustion engines, includes a fuel distributor and a plurality of fuel injectors. Each of the fuel injectors is situated on a cup of the fuel distributor. At least one of the fuel injectors is fastened to the associated cup by a retaining clip. The retaining clip has at least one clip section which is situated between an inner side of the cup and an outer side of the fuel injector. Furthermore, at least one damping composite element is provided, which is situated between the clip section of the retaining clip and the outer side of the fuel injector. The damping composite element has an elastically deformable damping layer. A decoupling is thus realized, which acts to damp vibrations and consequently to reduce noise.
Abstract:
A piston fuel pump for an internal combustion engine includes a pump housing, a piston, and a non-return discharge valve. The non-return discharge valve has a valve element and a guide element configured to guide the movement of the valve element. The guide element is at least indirectly pressed in a radial manner into an opening in the pump housing.
Abstract:
A piston-type fuel pump for an internal combustion engine includes a pump housing, a piston, an annular counterplate, and a non-return outlet valve. The pump housing includes a stepped opening and a piston opening. The piston is guided in the piston opening. The counterplate is pressed into the stepped opening and includes a valve seat. The non-return valve includes a valve element and a guide element. The guide element guides the valve element, is arranged radially outside the valve element and in the stepped opening, and includes a guide section, a retention section, and a support section. The guide section guides the valve element, the retention section is connected to the guide section via a radially extending connecting section, and the support section supports a valve spring. The sections are arranged axially at different points such that the guide section is between the counterplate and the support section.