Abstract:
The present invention provides processes for catalytically converting biomass to oxygenated compounds suitable for use in bioreforming processes.
Abstract:
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Abstract:
Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Abstract:
Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones, cyclic ethers and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4− hydrocarbons, cyclic ethers, alcohols and/or ketones, by condensation and/or deoxygenation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Abstract:
Reactor systems are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
Abstract:
A new catalyst for the selective conversion of isobutane to isobutylene. This catalyst also could be applied to the selective dehydrogenation of other light paraffins such as propane and n-butane. The catalyst is comprised of platinum, tin, and potassium supported on K--L-zeolite. This catalyst exhibits greater than 98% selectivity for conversion of isobutane to isobutylene at isobutane conversion levels greater than 50%. In addition, this catalyst exhibits excellent stability. The preferred catalyst would have an atomic ratio of Sn to Pt greater than 1.0 as well as an atomic ratio of K to Pt greater than 1.0.
Abstract:
Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Abstract:
Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons to aromatics and gasonline range hydrocarbons where the oxygenated hydrocarbons are derived from biomass.
Abstract:
The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
Abstract:
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.