Abstract:
A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.
Abstract:
To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
Abstract:
To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
Abstract:
A method of forming an oxide semiconductor includes a step of depositing an oxide semiconductor layer over a substrate by using a sputtering apparatus in which in a target containing indium, an element M (aluminum, gallium, yttrium, or tin), zinc, and oxygen, the substrate which faces a surface of the target, and a magnet unit comprising a first magnet and a second magnet on a rear surface side of the target are provided. In the method, deposition is performed under a condition that a maximum intensity of a horizontal magnetic field is greater than or equal to 350 G and less than or equal to 2000 G in a plane where a vertical distance toward the substrate from a surface of the magnet unit is 10 mm.
Abstract:
A semiconductor device having stable electrical characteristics is provided. A semiconductor device that can be miniaturized or highly integrated is provided. One embodiment of the present invention includes a transistor including an oxide, a first barrier layer over the transistor, and a second barrier layer in contact with the first barrier layer. The oxide is in contact with an insulator including an excess-oxygen region. The insulator is in contact with the first barrier layer. The first barrier layer has a thickness greater than or equal to 0.5 nm and less than or equal to 1.5 nm. The second barrier layer is thicker than the first barrier layer.
Abstract:
A transistor which includes an oxide semiconductor and is capable of high-speed operation and a method of manufacturing the transistor. In addition, a highly reliable semiconductor device including the transistor and a method of manufacturing the semiconductor device. The semiconductor device includes an oxide semiconductor layer including a channel formation region, and a source and drain regions which are provided so that the channel formation region is interposed therebetween and have lower resistance than the channel formation region. The channel formation region and the source and drain regions each include a crystalline region.
Abstract:
To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
Abstract:
A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125° C. and lower than or equal to 450° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
Abstract:
The reliability of a semiconductor device is increased by suppression of a variation in electric characteristics of a transistor as much as possible. As a cause of a variation in electric characteristics of a transistor including an oxide semiconductor, the concentration of hydrogen in the oxide semiconductor, the density of oxygen vacancies in the oxide semiconductor, or the like can be given. A source electrode and a drain electrode are formed using a conductive material which is easily bonded to oxygen. A channel formation region is formed using an oxide layer formed by a sputtering method or the like under an atmosphere containing oxygen. Thus, the concentration of hydrogen in a stack, in particular, the concentration of hydrogen in a channel formation region can be reduced.
Abstract:
Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.