Abstract:
Manufactured is a transistor including an oxide semiconductor layer, a source electrode layer and a drain electrode layer overlapping with part of the oxide semiconductor layer, a gate insulating layer overlapping with the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode overlapping with part of the oxide semiconductor layer with the gate insulating layer provided therebetween, wherein, after the oxide semiconductor layer which is to be a channel formation region is irradiated with light and the light irradiation is stopped, a relaxation time of carriers in photoresponse characteristics of the oxide semiconductor layer has at least two kinds of modes: τ1 and τ2, τ1
Abstract:
A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125° C. and lower than or equal to 450° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
Abstract:
An oxide semiconductor layer in which “safe” traps exist exhibits two kinds of modes in photoresponse characteristics. By using the oxide semiconductor layer, a transistor in which light deterioration is suppressed to the minimum and the electric characteristics are stable can be achieved. The oxide semiconductor layer exhibiting two kinds of modes in photoresponse characteristics has a photoelectric current value of 1 pA to 10 nA inclusive. When the average time τ1 until which carriers are captured by the “safe” traps is large enough, there are two kinds of modes in photoresponse characteristics, that is, a region where the current value falls rapidly and a region where the current value falls gradually, in the result of a change in photoelectric current over time.
Abstract:
A semiconductor device in which the threshold is adjusted is provided. In a transistor including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the semiconductor, the electron trap layer includes crystallized hafnium oxide. The crystallized hafnium oxide is deposited by a sputtering method using hafnium oxide as a target. When the substrate temperature is Tsub (° C.) and the proportion of oxygen in an atmosphere is P (%) in the sputtering method, P≧45−0.15×Tsub is satisfied. The crystallized hafnium oxide has excellent electron trapping properties. By the trap of an appropriate number of electrons, the threshold of the semiconductor device can be adjusted.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is adjusted is provided. In a semiconductor device including a plurality of transistors arranged in a matrix each including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit that supplies a signal to the gate electrode (e.g., word line driver) is provided with a selection circuit formed of an OR gate, an XOR gate, or the like, whereby potentials of word lines can be simultaneously set higher than potentials of bit lines.
Abstract:
An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.
Abstract translation:本发明的目的是提供一种具有稳定的电气特性和高可靠性的氧化物半导体膜的半导体装置。 通过在绝缘表面上形成厚度为1nm至10nm的第一材料膜(具有六方晶体结构的膜)形成第一和第二材料膜的叠层,并形成具有六方晶系结构的第二材料膜( 使用第一材料膜作为核的结晶氧化物半导体膜)。 作为第一材料膜,具有纤锌矿晶体结构的材料膜(例如氮化镓或氮化铝)或具有刚玉晶体结构的材料膜(α-Al 2 O 3,α-Ga 2 O 3,In 2 O 3,Ti 2 O 3,V 2 O 3,Cr 2 O 3,或 α-Fe 2 O 3)。
Abstract:
Provided are a semiconductor film including silicon microstructures formed at high density, and a manufacturing method thereof. Further, provided are a semiconductor film including silicon microstructures whose density is controlled, and a manufacturing method thereof. Furthermore, a power storage device with improved charge-discharge capacity is provided. A manufacturing method in which a semiconductor film with a silicon layer including silicon structures is formed over a substrate with a metal surface is used. The thickness of a silicide layer formed by reaction between the metal and the silicon is controlled, so that the grain sizes of silicide grains formed at an interface between the silicide layer and the silicon layer are controlled and the shapes of the silicon structures are controlled. Such a semiconductor film can be applied to an electrode of a power storage device.
Abstract:
An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.
Abstract:
A manufacturing method of a semiconductor device in which the threshold voltage is adjusted is provided. The semiconductor device includes a first semiconductor, an electrode electrically connected to the first semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the first semiconductor. By performing heat treatment at higher than or equal to 125° C. and lower than or equal to 450° C. and, at the same time, keeping a potential of the gate electrode higher than a potential of the electrode for 1 second or more, the threshold voltage is increased.
Abstract:
To provide a semiconductor device in which the threshold value is controlled. Furthermore, to provide a semiconductor device in which a deterioration in electrical characteristics which becomes more noticeable as a transistor is miniaturized can be suppressed. The semiconductor device includes a first semiconductor film, a source electrode and a drain electrode electrically connected to the first semiconductor film, a gate insulating film, and a gate electrode in contact with the gate insulating film. The gate insulating film includes a first insulating film and a trap film, and charge is trapped in a charge trap state in an interface between the first insulating film and the trap film or inside the trap film.