Abstract:
A substrate processing apparatus according to an embodiment includes: a liquid supplier configured to supply a processing liquid to a surface of a substrate; a temperature detector configured to detect a surface temperature of the substrate supplied with the processing liquid by the liquid supplier; a temperature monitor configured to determine whether or not the surface temperature detected by the temperature detector has reached a predetermined temperature; and a controller configured to cause the liquid supplier to stop supplying the processing liquid when the temperature monitor determines that the surface temperature has reached the predetermined temperature.
Abstract:
According to one embodiment, a substrate processing apparatus includes: a removing part (D1) configured to remove liquid droplets present in a recess (30); a drain hole (30a) located at the bottom of the recess (30) of a nozzle head (32), and configured to discharge the liquid droplets as a target to be removed out of the recess (30); and a controller configured to control the discharge state of a gas discharge nozzle (33) such that there is a period in which a gas is discharged from the gas discharge nozzle (33) at a flow rate, at which the gas discharged does not reach a surface to be processed of s substrate W, in a period from the end of the rinsing process using a treatment liquid to the start of the drying process using the gas.
Abstract:
According to one embodiment, a substrate processing apparatus (1) includes a table (4) configured to support a substrate W, a solvent supply unit (8) configured to supply a volatile solvent to a surface of the substrate W on the table (4), and an irradiator (10) configured to emit light to the substrate W, which has been supplied with the volatile solvent, and function as a heater that heats the substrate W such that a gas layer is formed on the surface of the substrate W to make the volatile solvent into a liquid ball. Thus, it is possible to dry the substrate successfully as well as to suppress pattern collapse.
Abstract:
According to one embodiment, a substrate processing apparatus includes a first liquid supplier, a second liquid supplier, and a controller. The first liquid supplier supplies a substrate with a sulfuric acid solution having a first temperature equal to or higher than the boiling point of hydrogen peroxide water. The second liquid supplier supplies a surface to be treated of the substrate with a mixture of sulfuric acid solution and hydrogen peroxide water having a second temperature lower than the first temperature. The controller controls the first liquid supplier to supply the sulfuric acid solution so as to heat the substrate to the boiling point of hydrogen peroxide water or higher. When the temperature of the substrate becomes equal to or higher than the second temperature, the controller controls the first liquid supplier to stop supplying the sulfuric acid solution and controls the second liquid supplier to supply the mixture.
Abstract:
The substrate processing unit 1 comprises the rotating table 31 configured to hold substrate W, the processing chamber 37 which accommodates the rotating table 31, a lamp 61 is provided above the processing chamber 37 and configured to heat the surface of substrate W, the lamp chamber 60 which accommodates that lamp 61, a transmission window 62 disposed below the lamp chamber 60, and a plurality of nozzle 64 which supply cooling fluid G to the transmission window 62. Then the substrate processing unit 1 can suppress generating of a water mark or pattern collapse, and can perform good substrate processing.
Abstract:
A substrate processing apparatus according to an embodiment includes: a liquid supplier configured to supply a processing liquid to a surface of a substrate; a temperature detector configured to detect a surface temperature of the substrate supplied with the processing liquid by the liquid supplier; a temperature monitor configured to determine whether or not the surface temperature detected by the temperature detector has reached a predetermined temperature; and a controller configured to cause the liquid supplier to stop supplying the processing liquid when the temperature monitor determines that the surface temperature has reached the predetermined temperature.
Abstract:
According to the embodiment, a suction stage includes a mounting section configured to mount a first substrate, and an evacuation section configured to evacuate air between the first substrate and the mounting section. The mounting section includes a first wall part provided on an outer peripheral side of one end surface of the mounting section and shaped like a ring, and a second wall part provided inside the first wall part and shaped like a ring. The evacuation section includes a first control valve provided between the evacuation section and a first region between the first wall part and the second wall part, a second control valve provided between the evacuation section and a second region inside the second wall part, and a control section configured to control the first control valve and the second control valve. The control section is configured to control the first control valve and the second control valve so that suction of the first substrate and deactivation of the suction of the first substrate are alternately performed in at least one of the first region and the second region. While the suction of the first substrate is deactivated in one of the first region and the second region, the suction of the first substrate is performed in the other region.
Abstract:
According to one embodiment, a bonding apparatus for processing a retained substrate includes a main body unit, a nozzle, a gas supply unit, and a substrate support unit. The nozzle opens on a face of the main body unit on a side that a first substrate is retained. The gas supply unit is configured to supply gas to the nozzle, to apply suction to the first substrate and to separate the substrate from the face of the main body unit. The substrate support unit is configured to support a peripheral edge portion of a second substrate provided in opposition to the first substrate with a predetermined gap.
Abstract:
A suction stage may include a mounting section configured to mount a first substrate, and an evacuation section configured to evacuate air between the first substrate and the mounting section. The mounting section includes a ring-shaped first wall part, and a ring-shaped second wall part inside the first wall part. The evacuation section includes a first control valve between the evacuation section and a first region between the first and second wall parts, a second control valve between the evacuation section and a second region inside the second wall part, and a control section configured to control the valves. The control section is configured to control the valves so that suction and non-suction of the first substrate are alternately performed in at least one of the regions. Thus, suction of the first substrate may be deactivated in one of the regions, while the suction is active in the other region.
Abstract:
According to one embodiment, a substrate processing apparatus includes a processing chamber, a support part, a heater, and an optical member. In the processing chamber, air flows from the top to the bottom. The support part is located in the processing chamber to support a substrate having a surface to be treated. The heater is arranged so as not to be above the support part and emits light for heating. The optical member is arranged in the processing chamber so as not to be above the support part to guide the light emitted by the heater and having passed above the support part to the surface to be treated of the substrate supported by the support part.