Abstract:
An electro-optic device may include a substrate layer, and a first photonic layer over the substrate layer and having a first photonic device. The electro-optic device may include a second photonic layer over the first photonic layer and having a second photonic device. The electro-optic device may include a dielectric layer over the second photonic layer, and a first electrically conductive via extending through the dielectric layer and the second photonic layer to couple to the first photonic device, and a second electrically conductive via extending through the dielectric layer and coupling to the second photonic device. The electro-optic device may include a third electrically conductive via extending through the substrate layer, the second photonic layer, and the first photonic layer to couple to the substrate layer.
Abstract:
A method is for making a photonic chip including EO devices having multiple thicknesses. The method may include forming a first semiconductor layer over a semiconductor film, forming a second semiconductor layer over the first semiconductor layer, and forming a mask layer over the second semiconductor layer. The method may include performing a first selective etching of the mask layer to provide initial alignment trenches, performing a second etching, aligned with some of the initial alignment trenches and using the first semiconductor layer as an etch stop, to provide multi-level trenches, and filling the multi-level trenches to make the EO devices having multiple thicknesses.
Abstract:
An electro-optic (E/O) device includes an asymmetric optical coupler having an input and first and second outputs, a first optical waveguide arm coupled to the first output of the first asymmetric optical coupler, and a second optical waveguide arm coupled to the second output of the first asymmetric optical coupler. At least one E/O amplitude modulator is coupled to at least one of the first and second optical waveguide arms. An optical combiner is coupled to the first and second optical waveguide arms downstream from the at least one E/O amplitude modulator.
Abstract:
A multi-mode interference device may include a body having an optical axis and configured to generate a stationary optical interference pattern from an incoming optical wave. The body may include ribs being parallel to the optical axis and being spaced apart to define a pitch and cause an optical coupling between the ribs.
Abstract:
A photonic system includes a first photonic circuit having a first face and a second photonic circuit having a second face. The first photonic circuit comprises first wave guides, and, for each first wave guide, a second wave guide covering the first wave guide, the second wave guides being in contact with the first face and placed between the first face and the second face, the first wave guides being located on the side of the first face opposite the second wave guides. The second photonic circuit comprises, for each second wave guide, a third wave guide covering the second wave guide. The first photonic circuit comprises first positioning devices projecting from the first face and the second photonic circuit comprises second positioning devices projecting from the second face, at least one of the first positioning devices abutting one of the second positioning devices in a first direction.
Abstract:
An optical waveguide is configured to propagate a light signal. Metal vias are arranged along and on either side of a portion of the optical waveguide. Additional metal vias are further arranged along and on either side of the optical waveguide both upstream and downstream of the portion of the optical waveguide. The metal vias and additional metal vias are oriented orthogonal to a same plane, the same plane being orthogonal to a transverse cross-section of the portion of the optical waveguide.
Abstract:
A photonic integrated device includes a first waveguide and a second waveguide. The first and second waveguides are mutually coupled at a junction region which includes a bulge region. The bulge region is defined two successive etching operations using two distinct etch masks, where the first etching operation is a partial etch and the second etching operation is a complete etch.
Abstract:
An E/O phase modulator may include a waveguide having an insulating substrate, a single-crystal silicon strip and a polysilicon strip of a same thickness and doped with opposite conductivity types above the insulating substrate, and an insulating interface layer between the single-crystal silicon strip and polysilicon strip. Each of the single-crystal silicon strip and polysilicon strip may be laterally continued by a respective extension, and a respective electrical contact coupled to each extension.
Abstract:
A photonic integrated circuit includes a first insulating region encapsulating at least one metallization level, a second insulating region at least partially encapsulating a gain medium of a laser source, and a stacked structure placed between the two insulating regions. The stacked structure includes a first polycrystalline or single-crystal silicon layer, a second polycrystalline or single-crystal silicon layer, an intermediate layer optically compatible with the wavelength of the laser source and selectively etchable relative to silicon and that separates the first layer from a first portion of the second layer, and the gain medium facing at least one portion of the first layer. The first layer, the intermediate layer, and the first portion of the second layer form an assembly containing a resonant cavity and a waveguide, which are optically coupled to the gain medium, and a second portion of the second layer containing at least one other photonic component.