Abstract:
The present disclosure relates to a method for writing in an EEPROM memory, the method comprising steps of: storing the bits of a word to be written in first memory units, erasing a word to be modified, formed by first memory cells connected to a word line and first bit lines, reading bits stored in the memory cells of a word line WL , in a first read mode and storing the bits read in second memory units, reading in a second read mode the bits stored in the memory cells of the word line, and programming each memory cell of the word line connected to a memory unit storing a bit in the programmed state of the word to be written, of an erased word or of a word comprising a bit having different states in the first and second read modes.
Abstract:
A method for erasing a page-erasable EEPROM-type memory includes: the memory receiving a command associated with a set of addresses of pages of the memory to be erased, each page comprising several memory cell groups each forming a word, for each address of the set of addresses, selecting a word line corresponding to a page of the memory, and triggering the simultaneous erasing of all the selected word lines.
Abstract:
A method is provided for managing the operation of a circuit operating in a slave mode. The circuit is connected to a bus having at least two of wires and a priority logic level. The slave circuit imposes the priority logic level on a first wire of the bus. While imposing, the slave circuit detects a possible conflict on the first wire resulting from a forcing, external to the slave circuit, of the first wire to another logic level. Upon detecting a conflict, the slave circuit is placed in a state stopping the sending by the circuit of any data over the bus while leaving the circuit listening to the bus.
Abstract:
The disclosure relates to a device for supplying to at least one integrated circuit a high voltage for erasing and/or programming of a memory. The device includes at least one contact terminal linked to at least one contact terminal of the integrated circuit, a monitor for monitoring a data signal received by the integrated circuit and detecting in the data signal a write command of the memory, and a voltage supplier for applying the high voltage to a terminal of the integrated circuit when a write command of the memory has been detected by the monitor.
Abstract:
A first power supply rail is provided as a power supply tree configured with couplings to distribute a supply voltage to active elements of the circuit. A second power supply rail is provided as an electrostatic discharge channel and is not configured with distribution tree couplings to active elements of the circuit. A first electrostatic discharge circuit is directly electrically connected between one end of the second power supply rail and a ground rail. A second electrostatic discharge circuit is directly electrically connected between an interconnect node and the ground rail. The interconnect node electrically interconnects another end of the second power supply rail to the first power supply rail at the second electrostatic discharge circuit.
Abstract:
An electronic chip is provided that includes a plurality of first transistors electrically coupled to one another in parallel. A plurality of first isolating trenches is included in the electronic chip, and the first transistors are separated from one another by the first isolating trenches. Each of the first isolation trenches has a depth and a maximum width, and the depth depends on, or is a function of, the maximum width.
Abstract:
A method of controlling a cycle for writing at least one data item to at least one memory slot of the electrically programmable and erasable read-only memory type disposed in an electronic circuit supplied by a supply voltage includes a controlled increase of the duration of the write cycle in the presence of a decrease in the supply voltage.
Abstract:
A method for managing a non-volatile memory may include a first phase of writing data to a first bank of a memory plane of the non-volatile memory, and then a second phase of writing the same data to a second bank of the same memory plane of the non-volatile memory in the case of success of the first writing phase.
Abstract:
A low pass filter comprises a filter input node configured to receive a first logic signal, a filter output node configured to supply a second logic signal, a resistive element comprising a first terminal coupled to the input node and a second terminal coupled to the output node, and a capacitive element comprising a first terminal coupled to the output node and a second terminal. The filter further comprises an inverting gate having a first terminal coupled to the input node and a second terminal coupled to the second terminal of the capacitive element.
Abstract:
A contactless transponder includes a non-volatile static random access memory including memory points. Each memory point is formed by a volatile memory cell and a non-volatile memory cell. A protocol processing circuit receives data and stores the received data in the volatile memory cells of the memory. A write processing circuit is configured, at the end of the reception and storage of the data, to record, in a single write cycle, the data from the volatile memory cells to the non-volatile memory cells of the respective memory points.