Abstract:
A scan driver, includes a plurality of stage circuits, each of which includes a driving circuit unit providing an output signal and an inverter inverting the output signal of the driving circuit unit and generating a scan signal, in which the inverter includes a first transistor and a second transistor, which are complementarily operated, the first transistor is a P-type polysilicon transistor, and the second transistor is an N-type oxide semiconductor transistor. A display device may include the scan driver.
Abstract:
A display device includes a substrate, a thin film transistor, a storage electrode, a pixel electrode, and a common electrode. The thin film transistor is disposed on the substrate and includes a drain electrode and a semiconductor layer. The storage electrode is disposed at a same layer as the semiconductor layer. The pixel electrode is disposed on the substrate and is electrically connected to the drain electrode. The common electrode is disposed on the substrate.
Abstract:
A liquid crystal display including: a first substrate; a gate line and a data line formed or otherwise disposed on the first substrate; a drain electrode disposed on the first substrate; a first insulating layer disposed on the gate line and the data line; a first electrode disposed on the first insulating layer; a second insulating layer disposed on the first electrode; and a second electrode disposed on the second insulating layer. The first insulating layer and the second insulating layer have a first contact hole exposing a portion of the drain electrode. The contact portion of the second electrode is connected to the drain electrode through the first contact hole, and the contact portion overlaps the first electrode adjacent the first contact hole. The overlap increases capacitance of the display panel so as to decrease kickback voltage and reduce flicker.
Abstract:
A method of driving a display device includes driving a light source unit with a first driving ratio and outputting received image data to a display panel of the display device, storing the received image data upon receipt of a signal indicating a still image is displayed, calculating a second driving ratio of the light source unit from a representative value of the stored image data, compensating the stored image data according to the second driving ratio, driving the light source unit with the second driving ratio that is lower than the first driving ratio, and outputting the compensated image data to the display panel.
Abstract:
A stage includes first, second, and third outputs and first and second signal processors. The first output supplies a scan signal to a first output terminal based on signals to first and second input terminals and the voltage of a first node. The second output is connected to a first power source and supplies an emission control signal to a second output terminal based on signals to the first input terminal, the first output terminal, and a third input terminal. The third output is connected to the first power source and supplies an inverted emission control signal to a third output terminal based on signals to the first input terminal and second output terminal. The first signal processor controls the first node voltage based on a signal to a fourth input terminal. The second signal processor controls the first node voltage based on the signal to the second input terminal.
Abstract:
In a scan driver including a plurality of stages configured to supply scan signals to scan lines, the scan driver includes: an i−1th stage configured to supply an i−1th scan signal to an i−1th scan line while controlling a node Qi−1 (i is a natural number) in response to a first clock signal, a third clock signal, and a control voltage; an ith stage configured to supply an ith scan signal to an ith scan line while controlling a node Qi in response to a second clock signal, a fourth clock signal, and the control voltage; and a controller connected to the i−1th stage and the ith stage, and configured to supply the control voltage.
Abstract:
Disclosed herein is a thin film transistor array panel, including: an insulating substrate; a gate electrode formed on the insulating substrate; a gate insulating layer formed on the gate electrode; a semiconductor layer formed on the gate insulating layer; a source electrode and a drain electrode formed on the semiconductor layer and the gate insulating layer and facing each other; and a pixel electrode connected to the drain electrode and applied with a voltage from the drain electrode, wherein a thickness of the gate insulating layer which overlaps the drain electrode but does not overlap the semiconductor layer is formed to be thinner than that which overlaps the semiconductor.
Abstract:
There is provided a stage circuit capable of minimizing a mounting area. The stage circuit includes: an output unit configured to supply a voltage of a first node, an i-th (i is a natural number) carry signal, and to supply an i-th scan signal in response to the voltage of the first node, a voltage of a second node, and a first clock signal, a controller configured to control the voltage of the second node in response to the first clock signal; a pull-up unit configured to control the voltage of the first node in response to a carry signal of a previous stage and a voltage of a first node of the previous stage, and a pull-down unit configured to control the voltage of the first node in response to the voltage of the second node and a carry signal of a next stage.
Abstract:
A stage includes a first transistor including an input terminal to which a clock signal is applied and a control terminal connected to a first node; a first capacitor including terminals respectively connected to the first node and an output terminal of the first transistor; a second transistor including an input terminal connected to the output terminal of the first transistor, a control terminal connected to a second node, and an output terminal to which a low voltage is applied; a third transistor including an output terminal connected to the second node, a control terminal connected to the first node, and an input terminal to which the low voltage is applied; and a fourth transistor including an input terminal connected to the first node and an output terminal to which the low voltage is applied, wherein the fourth transistor is switched according to an output signal of a next stage.