Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor includes an oxide semiconductor, in which an oxygen defect content of the oxide semiconductor is no greater than about 0.15 based on an entire oxygen content included in the oxide semiconductor.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
An OLED display and a method of manufacturing thereof are disclosed. In one aspect, the display includes a scan line formed over a substrate and configured to transfer a scan signal, a data line and a driving voltage line crossing the scan line and respectively configured to transfer a data voltage and a driving voltage, and a switching transistor electrically connected to the scan line and the data line and including a switching drain electrode configured to output the data voltage. The display also includes a driving transistor including a driving gate electrode, a driving drain electrode, and a driving source electrode electrically connected to the switching drain electrode. The display further includes a storage capacitor including a first storage electrode electrically connected to the driving gate electrode and a second storage electrode formed on the same layer as the driving voltage line.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A display device according to an exemplary embodiment of the present invention includes: a substrate; a plurality of transistors formed on the substrate; and a light-emitting device connected to the plurality of transistors, wherein the transistor includes a gate electrode, the plurality of transistors include a first transistor and a second transistor of which lateral wall slope angles of the gate electrode are different from each other, and the first transistor further includes a doping control member formed on a lateral wall of the gate electrode.
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the present disclosure includes: an insulating substrate; a gate electrode disposed on the insulating substrate; a gate insulating layer disposed on the gate electrode; a semiconductor disposed on the gate insulating layer; a source electrode and a drain electrode disposed on the semiconductor; an ohmic contact layer disposed at an interface between at least one of the source and drain electrodes and the semiconductor. Surface heights of the source and drain electrodes different, while surface heights of the semiconductor and the ohmic contact layer are the same. The ohmic contact layer is made of a silicide of a metal used for the source and drain electrodes.
Abstract:
A thin film transistor includes: a substrate; an oxide semiconductor layer disposed on the substrate; a source electrode and a drain electrode each connected to the oxide semiconductor layer and facing each other with respect to the oxide semiconductor layer; an insulating layer disposed on the oxide semiconductor layer; and a gate electrode disposed on the insulating layer. The insulating layer includes a first layer that includes silicon oxide (SiOx), a second layer that is a hydrogen blocking layer, and a third layer that includes silicon nitride (SiNx). The first, second and third layers are sequentially stacked.
Abstract:
A thin film transistor includes: a first semiconductor layer; a second semiconductor layer disposed on the first semiconductor layer; and a pair of source region and drain region formed by doping both sides of the first semiconductor layer and the second semiconductor layer with impurities, and the source region includes a first source layer on the same plane as the first semiconductor layer and a second source layer on the same plane as the second semiconductor layer, and the drain region includes a first drain layer on the same plane as the first semiconductor layer and a second drain layer on the same plane as the second semiconductor layer, and only one of the first semiconductor layer and the second semiconductor layer is a transistor channel layer.