Abstract:
A semiconductor device includes first through fourth areas, first through fourth gate stacks, the first gate stack includes a first high-dielectric layer, a first TiN layer to contact the first high-dielectric layer, and a first gate metal on the first TiN layer, the second gate stack includes a second high-dielectric layer, a second TiN layer to contact the second high-dielectric layer, and a second gate metal on the second TiN layer, the third gate stack includes a third high-dielectric layer, a third TiN layer to contact the third high-dielectric layer, and a third gate metal on the third TiN layer, and the fourth gate stack includes a fourth high-dielectric layer, a fourth TiN layer to contact the fourth high-dielectric layer, and a fourth gate metal on the fourth TiN layer, the first through fourth thicknesses of the TiN layers being different.
Abstract:
Semiconductor devices are provided. The semiconductor device includes a first fin portion and a second fin portion arranged on a substrate and extended in a first direction, the first fin portion and the second fin portion being spaced apart from each other in the first direction, a field insulating layer between the first fin portion and the second fin portion and having an upper surface thereof lower than an upper surface of the first fin portion, a first metal gate extended in a second direction on the first fin portion and a silicon gate extended in the second direction on the field insulating layer and contacting the field insulating layer.
Abstract:
Semiconductor devices are provided. The semiconductor device includes an active fin which extends along a first direction and has a protruding shape, a gate structure which is disposed on the active fin to extend along a second direction intersecting the first direction, and a spacer which is disposed on at least one side of the gate structure, wherein the gate structure includes a first area and a second area which is adjacent to the first area in the second direction, wherein a first width of the first area in the first direction is different from a second width of the second area in the first direction, and the spacer extends continuously along both the first area and the second area.
Abstract:
In a method of manufacturing a semiconductor device, a dummy gate structure including a dummy gate insulation layer pattern, a dummy gate electrode and a gate mask sequentially stacked are formed on a substrate. An interlayer insulating layer including tonen silazane (TOSZ) is formed on the substrate to cover the dummy gate structure. An upper portion of the interlayer insulating layer is planarized until a top surface of the gate mask is exposed to form an interlayer insulating layer pattern. The exposed gate mask, and the dummy gate electrode and the dummy gate insulation layer pattern under the gate mask are removed to form an opening exposing a top surface of the substrate. The dummy gate insulation layer pattern is removed using an etchant including hydrogen fluoride (HF), but the interlayer insulating layer pattern remains. A gate structure is formed to fill the opening.
Abstract:
A semiconductor device includes a N-type field effect transistor comprising a N-channel region in a substrate. A high dielectric constant (high-k) layer is disposed on the N-channel region. A diffusion layer including a metal oxide is disposed on the high-k layer. A passivation layer is disposed on the diffusion layer, and a first metal gate is disposed on the passivation layer. The first high-k layer and the N-channel region include metal atoms of a metal element of the metal oxide.
Abstract:
A semiconductor device includes a channel layer over an active region, first and second field regions adjacent the active region, and a gate structure over the channel layer and portions of the first and second field regions. The first and second field regions include grooves adjacent respective sidewalls of the channel layer, and bottom surfaces of the grooves are below a bottom surface of the channel layer.
Abstract:
A method for manufacturing a semiconductor device includes forming an insulation film including a trench on a substrate, forming a first metal gate film pattern and a second metal gate film pattern in the trench, redepositing a second metal gate film on the first and second metal gate film patterns and the insulation film, and forming a redeposited second metal gate film pattern on the first and second metal gate film patterns by performing a planarization process for removing a portion of the redeposited second metal gate film so as to expose a top surface of the insulation film, and forming a blocking layer pattern on the redeposited second metal gate film pattern by oxidizing an exposed surface of the redeposited second metal gate film pattern.