Abstract:
Exemplary embodiments provide for fabricating a nanosheet stack structure having one or more sub-stacks. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial stack of one or more sub-stacks, each of the sub-stacks having at least three layers, a sacrificial layer A, and at least two different non-sacrificial layers B and C having different material properties, wherein the non-sacrificial layers B and C layers are kept below a thermodynamic or kinetic critical thickness corresponding to metastability during all processing, and wherein the sacrificial layer An is placed only at a top or a bottom of each of the sub-stacks, and each of the sub-stacks is connected to an adjacent sub-stack at the top or the bottom using one of the sacrificial layers A; proceeding with fabrication flow of nanosheet devices, such that pillar structures are formed at each end of the epitaxial crystalline stack that to hold the nanosheets in place after selective etch of the sacrificial layers; and selectively removing sacrificial layers A to all non-sacrificial layers B and C, while the remaining layers in the stack are held in place by the pillar structures so that after removal of the sacrificial layers An, each of the sub-stacks contains the non-sacrificial layers B and C.
Abstract:
A finFET device can include a high mobility semiconductor material in a fin structure that can provide a channel region for the finFET device. A source/drain recess can be adjacent to the fin structure and a graded composition epi-grown semiconductor alloy material, that includes a component of the high mobility semiconductor material, can be located in the source/drain recess.
Abstract:
A damascene interconnect structure may be formed by forming a trench in an ILD. A diffusion barrier may be deposited on trench surfaces, followed by a first liner material. The first liner material may be removed from a bottom surface of the trench. A second liner material may be directionally deposited on the bottom. A conductive seed layer may be deposited on the first and second liner materials, and a conductive material may fill in the trench. A CMP process can remove excess material from the top of the structure. A damascene interconnect may include a dielectric having a trench, a first liner layer arranged on trench sidewalls, and a second liner layer arranged on a trench bottom. A conductive material may fill the trench. The first liner material may have low wettability and the second liner material may have high wettability with respect to the conductive material.
Abstract:
Exemplary embodiments provide methods for fabricating a nanosheet structure suitable for field-effect transistor (FET) fabrication. Aspects of exemplary embodiment include selecting an active material that will serve as a channel material in the nanosheet structure, a substrate suitable for epitaxial growth of the active material, and a sacrificial material to be used during fabrication of the nanosheet structure; growing a stack of alternating layers of active and sacrificial materials over the substrate; and selectively etching the sacrificial material, wherein due to the properties of the sacrificial material, the selective etch results in remaining layers of active material having an aspect ratio greater than 1 and substantially a same thickness and atomic smoothness along the entire cross-sectional width of each active material layer perpendicular to current flow.
Abstract:
Methods of forming a finFET are provided. The methods may include forming a fin-shaped channel region including indium (In) on a substrate, forming a deep source/drain region adjacent to the channel region on the substrate and forming a source/drain extension region between the channel region and the deep source/drain region. Opposing sidewalls of the source/drain extension region may contact the channel region and the deep source/drain region, respectively, and the source/drain extension region may include InyGa1−yAs, and y is in a range of about 0.3 to about 0.5.
Abstract translation:提供了形成finFET的方法。 所述方法可以包括在衬底上形成包括铟(In)的鳍状沟道区域,形成与衬底上的沟道区相邻的深源极/漏极区域,并在沟道区域和深度之间形成源极/漏极延伸区域 源/漏区。 源极/漏极延伸区域的相对侧壁可以分别接触沟道区域和深源极/漏极区域,并且源极/漏极延伸区域可以包括In y Ga 1-y As,y在约0.3至约0.5的范围内。
Abstract:
Integrated circuit devices including strained channel regions and methods of forming the same are provided. The integrated circuit devices may include enhancement-mode field effect transistors. The enhancement-mode field effect transistors may include a quantum well channel region having a well thickness Tw sufficient to yield a strain-induced splitting of a plurality of equivalent-type electron conduction states therein to respective unequal energy levels including a lowermost energy level associated with a lowermost surface roughness scattering adjacent a surface of the channel region when, the surface is biased into a state of inversion.
Abstract:
Exemplary embodiments provide for fabricating a nanosheet stack structure having one or more sub-stacks. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial stack of one or more sub-stacks, each of the sub-stacks having at least three layers, a sacrificial layer A, and at least two different non-sacrificial layers B and C having different material properties, wherein the non-sacrificial layers B and C layers are kept below a thermodynamic or kinetic critical thickness corresponding to metastability during all processing, and wherein the sacrificial layer An is placed only at a top or a bottom of each of the sub-stacks, and each of the sub-stacks is connected to an adjacent sub-stack at the top or the bottom using one of the sacrificial layers A; proceeding with fabrication flow of nanosheet devices, such that pillar structures are formed at each end of the epitaxial crystalline stack that to hold the nanosheets in place after selective etch of the sacrificial layers; and selectively removing sacrificial layers A to all non-sacrificial layers B and C, while the remaining layers in the stack are held in place by the pillar structures so that after removal of the sacrificial layers An, each of the sub-stacks contains the non-sacrificial layers B and C.
Abstract:
Methods of fabricating quantum well field effect transistors are provided. The methods may include forming a first barrier layer including a first delta doped layer on a quantum well layer and forming a second barrier layer including a second delta doped layer selectively on a portion of the first barrier layer in a first region of the substrate. The methods may also include patterning the first and second barrier layers and the quantum well layer to form a first quantum well channel structure in the first region and patterning the first barrier layer and the quantum well layer to form a second quantum well channel structure in a second region. The methods may further include forming a gate insulating layer on the first and second quantum well channel structures of the substrate and forming a gate electrode layer on the gate insulating layer.
Abstract:
A logic device is provided which includes an electron monochromator. The electron monochromator includes a quantum dot disposed between first and second tunneling barriers, an emitter coupled to the first tunneling barrier, and a collector coupled to the second tunneling barrier. The logic device also includes a quantum interference device. The quantum interference device includes a source which is coupled to the collector of the electron monochromator.
Abstract:
A logic device is provided which includes an electron monochromator. The electron monochromator includes a quantum dot disposed between first and second tunneling barriers, an emitter coupled to the first tunneling barrier, and a collector coupled to the second tunneling barrier. The logic device also includes a quantum interference device. The quantum interference device includes a source which is coupled to the collector of the electron monochromator.