Abstract:
A nonvolatile memory device includes a conductive line disposed on a substrate and vertically extended from the substrate, a first channel layer disposed on the substrate and vertically extended from the substrate, wherein the first channel layer is spaced apart from the conductive line, a second channel layer vertically extended from the substrate, wherein the second channel layer is disposed between the first channel layer and the conductive line, a first gate electrode disposed between the conductive line and the second channel layer, wherein the first gate electrode includes a first portion having a first thickness and a second portion having a second thickness that is different from the first thickness, and a second gate electrode disposed between the first channel layer and the second channel layer, wherein the second gate electrode has the second thickness.
Abstract:
The present invention is directed to a photographing lens containing, in order from an object side: a first lens having a positive refractive power and a convex surface facing the object side; a second lens having a negative refractive power; a third lens having a positive refractive power; and a fourth lens having a negative refractive power and at least one aspheric surface, the photographing lens satisfying the following conditional expressions: L T f ≤ 1.2 0.5 ≤ f 3 f ≤ 1.0 where LT denotes the distance on the optical axis between the object side of the first lens and the image side of the fourth lens; f denotes the total focal length of the photographing lens; and f3 denotes the focal length of the third lens.
Abstract:
A semiconductor device includes a lower insulation layer, a plurality of base layer patterns separated from each other on the lower insulation layer, a separation layer pattern between the base layer patterns, a plurality of channels extending in a vertical direction with respect to top surfaces of the base layer patterns, and a plurality of gate lines surrounding outer sidewalls of the channels, being stacked in the vertical direction and spaced apart from each other.
Abstract:
A method of fabricating a nonvolatile memory device includes providing a substrate having active regions defined by a plurality of trenches, forming a first isolation layer on the substrate having the plurality of trenches, forming a sacrificial layer on the first isolation layer to fill the trenches, the sacrificial layer including a first region filling lower portions of the trenches and a second region filling portions other than the lower portions, removing the second region of the sacrificial layer, forming a second isolation layer on the first isolation layer and the first region of the sacrificial layer, forming air gaps in the trenches by removing the first region of the sacrificial layer, and removing a portion of the first isolation layer and a portion of the second isolation layer while maintaining the air gaps.
Abstract:
A method of fabricating a nonvolatile memory device includes forming trenches in a substrate defining device isolation regions therein and active regions therebetween. The trenches and the active regions therebetween extend into first and second device regions of the substrate. A sacrificial layer is formed in the trenches between the active regions in the first device region, and an insulating layer is formed to substantially fill the trenches between the active regions in the second device region. At least a portion of the sacrificial layer in the trenches in the first device region is selectively removed to define gap regions extending along the trenches between the active regions in the first device region, while substantially maintaining the insulating layer in the trenches between the active regions in the second device region. Related methods and devices are also discussed.
Abstract:
A method of fabricating a semiconductor package includes mounting at least one semiconductor chip to a package substrate, forming a shielding wall around the at least one semiconductor chip, forming a molded body on the package substrate in a space surrounded by the shielding wall, and forming a shielding cover covering the molding unit and in contact with the shielding wall.
Abstract:
A vertical memory device includes insulating interlayer patterns, of gate electrodes, a channel, and a charge storage pattern structure. The insulating interlayer patterns are spaced in a first direction. The gate electrodes between are neighboring insulating interlayer patterns, respectively. The channel extends through the insulating interlayer patterns and the gate electrodes in the first direction. The charge storage pattern structure includes a tunnel insulation pattern, a charge trapping pattern structure, and a blocking pattern sequentially stacked between the channel and each of the gate electrodes in a second direction. The charge trapping pattern structure includes charge trapping patterns spaced in the first direction. The charge trapping patterns are adjacent to sidewalls of first gate electrodes, respectively. A first charge trapping pattern extends in the first direction along a sidewall of a first insulating interlayer pattern.
Abstract:
A non-volatile memory device is provided. The non-volatile memory device includes a channel structure that is located on a substrate and extends perpendicularly to the substrate, a conductive pattern that extends perpendicularly to the substrate and is spaced apart from the channel structure, an electrode structure that is located between the channel structure and the conductive pattern, and comprises a plurality of gate patterns and a plurality of insulation patterns that are alternately laminated. An insulating layer that contacts with a top surface of the conductive pattern is formed along side surfaces of the electrode structure. The top surface of the conductive pattern is formed to be lower than the top surface of the channel structure.
Abstract:
A vertical memory device includes insulating interlayer patterns, of gate electrodes, a channel, and a charge storage pattern structure. The insulating interlayer patterns are spaced in a first direction. The gate electrodes between are neighboring insulating interlayer patterns, respectively. The channel extends through the insulating interlayer patterns and the gate electrodes in the first direction. The charge storage pattern structure includes a tunnel insulation pattern, a charge trapping pattern structure, and a blocking pattern sequentially stacked between the channel and each of the gate electrodes in a second direction. The charge trapping pattern structure includes charge trapping patterns spaced in the first direction. The charge trapping patterns are adjacent to sidewalls of first gate electrodes, respectively. A first charge trapping pattern extends in the first direction along a sidewall of a first insulating interlayer pattern.
Abstract:
A non-volatile memory device is provided. The non-volatile memory device includes a channel structure that is located on a substrate and extends perpendicularly to the substrate, a conductive pattern that extends perpendicularly to the substrate and is spaced apart from the channel structure, an electrode structure that is located between the channel structure and the conductive pattern, and comprises a plurality of gate patterns and a plurality of insulation patterns that are alternately laminated. An insulating layer that contacts with a top surface of the conductive pattern is formed along side surfaces of the electrode structure. The top surface of the conductive pattern is formed to be lower than the top surface of the channel structure.