Abstract:
A semiconductor device includes a lower insulation layer, a plurality of base layer patterns separated from each other on the lower insulation layer, a separation layer pattern between the base layer patterns, a plurality of channels extending in a vertical direction with respect to top surfaces of the base layer patterns, and a plurality of gate lines surrounding outer sidewalls of the channels, being stacked in the vertical direction and spaced apart from each other.
Abstract:
A method of fabricating a nonvolatile memory device includes forming trenches in a substrate defining device isolation regions therein and active regions therebetween. The trenches and the active regions therebetween extend into first and second device regions of the substrate. A sacrificial layer is formed in the trenches between the active regions in the first device region, and an insulating layer is formed to substantially fill the trenches between the active regions in the second device region. At least a portion of the sacrificial layer in the trenches in the first device region is selectively removed to define gap regions extending along the trenches between the active regions in the first device region, while substantially maintaining the insulating layer in the trenches between the active regions in the second device region. Related methods and devices are also discussed.
Abstract:
A non-volatile memory device having a vertical structure includes: a first interlayer insulating layer on a substrate; a first gate electrode disposed on the first interlayer insulating layer; second interlayer insulating layers and second gate electrodes alternately stacked on the first gate electrode; an opening portion penetrating the first gate electrode, the second interlayer insulating layers, and the second gate electrodes and exposing the first interlayer insulating layer; a gate dielectric layer covering side walls and a bottom surface of the opening portion; and a channel region formed on the gate dielectric layer, and penetrating a bottom surface of the gate dielectric layer and the first interlayer insulating layer and thus electrically connected to the substrate, wherein a separation distance between side walls of the gate dielectric layer in a region which contacts the first gate electrode is greater than that in a region which contacts any one of the second gate electrodes.
Abstract:
The present invention is directed to a photographing lens containing, in order from an object side: a first lens having a positive refractive power and a convex surface facing the object side; a second lens having a negative refractive power; a third lens having a positive refractive power; and a fourth lens having a negative refractive power and at least one aspheric surface, the photographing lens satisfying the following conditional expressions: L T f ≤ 1.2 0.5 ≤ f 3 f ≤ 1.0 where LT denotes the distance on the optical axis between the object side of the first lens and the image side of the fourth lens; f denotes the total focal length of the photographing lens; and f3 denotes the focal length of the third lens.
Abstract:
A semiconductor device includes a peripheral circuit region on a substrate, a polysilicon layer on the peripheral circuit region, a memory cell array region on the polysilicon layer and overlapping the peripheral circuit region, the peripheral circuit region being under the memory cell array region, an upper interconnection layer on the memory cell array region, and a vertical contact through the memory cell array region and the polysilicon layer, the vertical contact connecting the upper interconnection layer to the peripheral circuit region.
Abstract:
A semiconductor device is provided. Word lines are formed on a substrate. An air gap is interposed between two adjacent word lines. A channel structure penetrates through the word lines and the air gap. A memory cell is interposed between each word line and the channel structure. The memory cell includes a blocking pattern, a charge trap pattern and a tunneling insulating pattern. The blocking pattern conformally covers a top surface, a bottom surface, and a first side surface of each word line. The first side surface is adjacent to the channel structure. The charge trap pattern is interposed only between the first side surface and the channel structure.
Abstract:
A method of fabricating a semiconductor package includes mounting at least one semiconductor chip to a package substrate, forming a shielding wall around the at least one semiconductor chip, forming a molded body on the package substrate in a space surrounded by the shielding wall, and forming a shielding cover covering the molding unit and in contact with the shielding wall.
Abstract:
A method of fabricating a semiconductor package includes mounting at least one semiconductor chip to a package substrate, forming a shielding wall around the at least one semiconductor chip, forming a molded body on the package substrate in a space surrounded by the shielding wall, and forming a shielding cover covering the molding unit and in contact with the shielding wall.
Abstract:
A method of fabricating a semiconductor package includes mounting at least one semiconductor chip to a package substrate, forming a shielding wall around the at least one semiconductor chip, forming a molded body on the package substrate in a space surrounded by the shielding wall, and forming a shielding cover covering the molding unit and in contact with the shielding wall.
Abstract:
A semiconductor device includes a lower insulation layer, a plurality of base layer patterns separated from each other on the lower insulation layer, a separation layer pattern between the base layer patterns, a plurality of channels extending in a vertical direction with respect to top surfaces of the base layer patterns, and a plurality of gate lines surrounding outer sidewalls of the channels, being stacked in the vertical direction and spaced apart from each other.