Abstract:
An apparatus interworking with a metal member used both as an antenna and a sensor element in a portable terminal is disclosed. The apparatus includes the metal member, responsive to a sensed body, and for transmitting and receiving a signal in at least one or more communication service bands, and a main board having a communication module for processing a signal transmitted and received by the metal member and a sensor module for obtaining information in response to the approach of a sensed body.
Abstract:
An antenna module and an electronic device are provided. The antenna module may include a first case including a case surface, wherein at least one antenna protection part is disposed on the first case, and wherein the at least one antenna projection part is formed to be distinguishable from the case surface, an antenna including a pattern, wherein at least a part of the pattern of the antenna is adjacently disposed to the antenna protection part.
Abstract:
An antenna apparatus for a portable terminal which is light, thin, compact, and small. The antenna apparatus preferably includes a main board equipped with a power feeding part for feeding power and a ground surface for grounding the main board and at least one sub-board, each sub-board which has a ground surface and electrically communicates with the main board, wherein the ground surface of each sub-board receives power from the power feeding part of the main board and resonates.
Abstract:
A re-reconfigurable built-in antenna of a portable terminal is provided. The antenna includes an antenna radiator having a feeding pad electrically connected to a feeding portion of a main board of the terminal and at least one ground pad disposed in a position different from that of the feeding pad for selectively establishing an electrical connection to a ground portion of the terminal, and a switching element, commonly connected to the at least one ground pad of the antenna radiator, for selectively establishing an electrical connection to the ground portion by a switching operation. The antenna radiator changes a shape of the antenna radiator by using the selective electrical connection of the ground portion so as to have various operational frequency bands and radiation properties.
Abstract:
An electronic device for communicating in a network is provided. The electronic device includes a circuit board, a frame, a feeding structure formed on the circuit board, and an antenna unit disposed in a plane at a predetermined angle with respect to a surface of the circuit board. In addition, the antenna unit is disposed apart from the frame in electrical connection with the feeding structure.
Abstract:
An antenna apparatus and an electronic device having the same is provided. The electronic device includes an antenna radiator formed in a loop shape having at least one opening end part opened by a slit, at least a portion of the at least one opening end part is fed, at least one electronic component of metal material electrically connected with the antenna radiator, and at least one metal member arranged around the antenna radiator, where the at least one opening end part is formed in a reverse direction from the direction of the metal member.
Abstract:
A test fixture with hand simulation for securing a wireless terminal during a performance test is provided. The test fixture includes first and second dielectric parts adjustably spaced apart to adjust a distance of a housing space therebetween within which the wireless terminal is securable. The first and second dielectric parts simulating respective portions of a human hand holding the wireless terminal. The housing space is adjusted according to a size of the wireless terminal by adjusting a distance between portions of the first and second dielectric parts.
Abstract:
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.