Abstract:
A laser diode includes a substrate and a junction layer disposed on the substrate. The junction layer forms a quantum well of the laser diode. The laser diode includes a junction surface having at least one channel that extends through the junction layer to the substrate. The at least one channel defines an anode region and a cathode region. A cathode electrical junction is disposed on the junction surface at the cathode region, and an anode electrical junction is disposed on the junction surface and coupled to the junction layer at the anode region. A cathode metal layer is disposed in at least a trench region of the channel. The cathode metal layer couples the substrate to the cathode electrical junction.
Abstract:
An apparatus includes a slider with a cavity in a trailing end of the slider. A laser is positioned in the cavity and has an output facet positioned adjacent to a first wall of the cavity. A cap is connected to the trailing end of the slider and covers the laser.
Abstract:
A device such as a photo sensor, an optical isolator, and an optical damper is formed via a first process. The device is transfer printed to a waveguide of a read/write head in a second process.
Abstract:
A recording head includes a layer of plasmonic metal deposited on a surface of the recording head. One or more non-self-supporting layers of crystalline material are attached to the plasmonic metal, the one or more layers of crystalline materials configured to form an active region of a laser. A waveguide is configured to receive plasmons from the laser and direct the plasmons to a recording medium.
Abstract:
A mounting surface of a read/write head is prepared to receive an epitaxial layer. The mounting surface is proximate a waveguide of the read/write head, and the waveguide is configured to receive an optical output from the epitaxial layer. The epitaxial layer is transfer printed on to the mounting surface. The mounting surface maintains a vertical alignment between the optical output and the waveguide. The epitaxial layer is processed to form a laser integrated with the read/write head.
Abstract:
An apparatus that includes a slider having a mounting surface, the mounting surface opposite a media-facing surface of the slider. The apparatus includes a laser diode mounted on a side surface to the mounting surface. The laser diode has an active region of the laser diode is disposed substantially perpendicular to the mounting surface.
Abstract:
A laser diode includes a substrate and a junction layer disposed on the substrate. The junction layer forms a quantum well of the laser diode. The laser diode includes a junction surface having at least one channel that extends through the junction layer to the substrate. The at least one channel defines an anode region and a cathode region. A cathode electrical junction is disposed on the junction surface at the cathode region, and an anode electrical junction is disposed on the junction surface and coupled to the junction layer at the anode region. A cathode metal layer is disposed in at least a trench region of the channel. The cathode metal layer couples the substrate to the cathode electrical junction.
Abstract:
A recording head includes an external cavity laser with an externally mounted part having an active region. The external cavity laser also includes a channel waveguide that delivers light towards a media-facing surface. A near-field transducer functions as a reflector, either alone or in combination with a Bragg grating in the channel waveguide. A reflective back facet of the externally mounted part and the reflector define a resonator of the external cavity laser.
Abstract:
A folded lasing cavity comprises at least one bend. The folded lasing cavity is disposed on and configured to emit light along a substrate-parallel plane. An etched facet is on an emitting end of the folded lasing cavity and an etched mirror is on another end of the folding lasing cavity. An etched shaping mirror redirects light received from the etched facet in a direction normal to the substrate-parallel plane.
Abstract:
An apparatus comprises a first electrical contact, a second electrical contact, and a semiconductor device disposed between the first and second electrical contacts. The semiconductor device comprises a laser diode and a temperature control unit. The laser diode comprises p-type semiconductor material and n-type semiconductor material. The temperature control unit comprises p-type semiconductor material, n-type semiconductor material, and a resistor coupled to the laser diode. One of the p-type semiconductor material and the n-type semiconductor material is shared by the laser diode and the temperature control unit.