摘要:
The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.
摘要:
A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired proportions, at a plurality of mixing nozzles which are open to the catalytic partial oxidation reaction zone of a reactor and are uniformly-spaced over the face of the injector, to form a reactant gaseous premix having a pressure drop through the injector. The gaseous premix is injected in a time period which is less than 5 milliseconds, at a velocity between about 25 to 1000 feet/second, into a reaction zone comprising a catalytic partial oxidation zone so that the gaseous premix reacts in the presence of the fixed catalyst arrangement to reduce the amounts of CO.sub.2, H.sub.2 O and heat produced by the partial oxidation reaction and form, cool and recover a useful syngas.
摘要:
The invention is a process for production of C.sub.3 to C.sub.6 aldehydes by hydroformylating a mixture containing: (a) C.sub.2 to C.sub.5 olefins and mixtures thereof, and (b) (i) C.sub.2 to C.sub.5 alkynes and mixtures thereof or (ii) C.sub.3 to C.sub.5 cumulated dienes and mixtures thereof or (iii) mixtures of (i) and (ii), with CO, H.sub.2 and a solution of a rhodium complex catalyst produced by complexing Rh and an organophosphorus compound at a concentration of Rh in solution from 1 to 1000 ppm by weight. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio of at least 30. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio greater than the value R.sub.L defined by the formula: ##EQU1## in which R.sub.B is the P/Rh ratio sufficient for a catalytically active Rh complex, pKa.sub.TPP is the pKa value for triphenylphosphine, pKa.sub.L is the pKa value for the triorganophosphorus compound, R is the gas constant, and .DELTA.S.sub.B is 35(N-1) cal/mole/.degree.K., N is the number of P-Rh attachments per ligand molecule. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
摘要:
The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.
摘要:
The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.
摘要:
The invention provides a method for generating power with a gas turbine which utilizes pressure swing reforming under conditions that facilitate CO2 capture. First a synthesis gas stream at a first pressure is produced in a pressure swing reformer. Next the synthesis gas stream is subjected to a high temperature water gas shift process to produce a CO2 containing hydrogen enriched stream from which hydrogen and CO2 each are separated. The separated hydrogen in turn is combusted with air to produce a gas turbine and the separated CO2 is easily sequestered.
摘要:
This invention is directed to a heat exchanged membrane reactor for electric power generation. More specifically, the invention comprises a membrane reactor system that employs catalytic or thermal steam reforming and a water gas shift reaction on one side of the membrane, and hydrogen combustion on the other side of the membrane. Heat of combustion is exchanged through the membrane to heat the hydrocarbon fuel and provide heat for the reforming reaction. In one embodiment, the hydrogen is combusted with compressed air to power a turbine to produce electricity. A carbon dioxide product stream is produced in inherently separated form and at pressure to facilitate injection of the CO2 into a well for the purpose of sequestering carbon from the earth's atmosphere.
摘要:
A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources comprising a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas, preheated and pressurized, are injected through an injector means at high velocity into admixture with each other in the desired relative proportions, at a plurality of mixing nozzles which are open to the partial oxidation zone of a reactor and are uniformly-spaced over the face of the injector means, to form a reactant gaseous premix having a pressure at least 3% lower than the lowest upstream pressure of either of the streams of the individual gases. The gaseous premix is injected in a time period which is less than its autoignition time, preferably less than 9 milliseconds, at a velocity between about 25 to 1000 feet/second, into the partial oxidation zone of the reactor. The gas mixture reacts before or simultaneously with the autoignition time delay of the mixture, to reduce the amounts of CO.sub.2, H.sub.2 O and heat produced by the partial oxidation reaction to form a useful syngas which is cooled and recovered.
摘要:
Systems and methods for hydrotreating a liquid fraction of a shale oil stream using hydrogen gas that is concentrated from a gaseous fraction of the shale oil stream. The systems and methods include providing a portion of the gaseous fraction to a sorptive separation assembly and separating a concentrated hydrogen stream from the portion of the gaseous fraction within the sorptive separation assembly. The system and methods further include providing the concentrated hydrogen stream and the liquid fraction to a hydrotreater and reacting the concentrated hydrogen stream with the liquid fraction within the hydrotreater to produce the hydrotreated liquid stream. The systems and methods may include generating the shale oil stream within a subterranean formation using an in situ process, such as an in situ shale oil conversion process and/or providing a supplemental hydrogen stream to the hydrotreater.
摘要:
The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.