Abstract:
A method for manufacturing a display device with low power consumption is provided. A method for manufacturing a display device includes a step of forming a first layer over a substrate by using a material containing a resin or a resin precursor, a step of forming a first region and a second region thinner than the first region in the first layer, a step of forming a first resin layer including a first region and a second region thinner than the first region by performing first heat treatment on the first layer in a gas containing oxygen, a step of forming, over the first resin layer, a layer to be separated including a display element, and a step of separating the layer to be separated and the substrate from each other. A step of forming a conductive layer over the first resin layer in a position overlapping with the second region is included in the step of forming the layer to be separated. A step of exposing the conductive layer by removing the first resin layer is included after the step of separating the layer to be separated and the substrate from each other.
Abstract:
The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of the semiconductor device is increased. The semiconductor device is manufactured by performing a step of performing plasma treatment on a first surface of a substrate; a step of forming a first layer over the first surface with the use of a material containing a resin or a resin precursor; a step of forming a resin layer by performing heat treatment on the first layer; and a step of separating the substrate and the resin layer from each other. In the plasma treatment, the first surface is exposed to an atmosphere containing one or more of hydrogen, oxygen, and water vapor.
Abstract:
In a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The transistor includes an oxide semiconductor film over a first insulating film; a second insulating film over the oxide semiconductor film; a gate electrode over the second insulating film; a metal oxide film in contact with a side surface of the second insulating film; and a third insulating film over the oxide semiconductor film, the gate electrode, and the metal oxide film. The oxide semiconductor film includes a channel region overlapping with the gate electrode, a source region in contact with the third insulating film, and a drain region in contact with the third insulating film. The source region and the drain region contain one or more of hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas.
Abstract:
A display device with high display quality is provided. The display device includes a first organic insulating layer, a first inorganic insulating layer and a second inorganic insulating layer over the first organic insulating layer, a first light-emitting element, a second light-emitting element, and a second organic insulating layer. The first light-emitting element includes a first pixel electrode over the first inorganic insulating layer, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer. The second light-emitting element includes a second pixel electrode over the second inorganic insulating layer, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer. The second organic insulating layer is provided between the first EL layer and the second EL layer, and the common electrode is provided over the second organic insulating layer. The first organic insulating layer includes a depressed portion in a region overlapping with the second organic insulating layer, the first inorganic insulating layer includes a first projecting portion overlapping with the depressed portion, and the second inorganic insulating layer includes a second projecting portion overlapping with the depressed portion.
Abstract:
A novel display apparatus that is highly convenient, useful, or reliable is provided. The display apparatus includes a first light-emitting device including a first electrode, a first layer, a first unit, and a second electrode and a second light-emitting device including a third electrode, a second layer, a second unit, and a fourth electrode. The first unit is between the first electrode and the second electrode and includes a first light-emitting material. The first layer is between the first unit and the first electrode and is in contact with the first electrode. The third electrode is adjacent to the first electrode. A first gap is between the third electrode and the first electrode. The second unit is between the third electrode and the fourth electrode and includes a second light-emitting material. The second layer is between the second unit and the third electrode and is in contact with the third electrode. The first layer and the second layer use a material having a first spin density and a material having a second spin density higher than the first spin density, respectively, each observed with an electron spin resonance (ESR) spectrometer when the material is in a film state.
Abstract:
A display device with high resolution is provided. A display device with a high aperture ratio is provided. The display device includes a first pixel electrode, a second pixel electrode, a first insulating layer, a second insulating layer, a first EL layer, a second EL layer, and a common electrode. The first insulating layer covers end portions of the first pixel electrode and the second pixel electrode. The second insulating layer is provided over the first pixel electrode, the second pixel electrode, and the first insulating layer and covers an end portion of the first insulating layer. The first EL layer is provided over the first pixel electrode and the second EL layer is provided over the second pixel electrode. An end portion of the first EL layer and an end portion of the second EL layer face each other and overlap with the first insulating layer. The common electrode includes a portion overlapping with the first EL layer and a portion overlapping with the second EL layer. The first insulating layer includes an organic resin, and the second insulating layer includes an inorganic insulating material.
Abstract:
To suppress a change in electrical characteristics and improve reliability in a transistor including an oxide semiconductor film. Provided is a semiconductor device including a transistor including a first gate electrode, a first insulating film over the first gate electrode, a first oxide semiconductor film over the first insulating film, a source electrode electrically connected to the first oxide semiconductor film, a drain electrode electrically connected to the first oxide semiconductor film, a second insulating film over the first oxide semiconductor film, a second oxide semiconductor film as a second gate electrode over the second insulating film, and a third insulating film over the second oxide semiconductor film. The second insulating film includes an excess oxygen region having a concentration gradient.
Abstract:
A semiconductor device having a high aperture ratio and including a capacitor capable of increasing the charge capacity is provided. A semiconductor device includes a transistor over a substrate, a first light-transmitting conductive film over the substrate, an oxide insulating film covering the transistor and having an opening over the first light-transmitting conductive film, a nitride insulating film over the oxide insulating film and in contact with the first light-transmitting conductive film in the opening, a second light-transmitting conductive film connected to the transistor and having a depressed portion in the opening, and an organic resin film with which the depressed portion of the second light-transmitting conductive film is filled.
Abstract:
A method for manufacturing a novel display device that is highly convenient, useful, or reliable is to be provided. A first film is formed over a first electrode and a second electrode in a second step in the manufacturing method; a second film is formed over the first film in a third step; a third film is formed over the second film by a CVD method in a fourth step; part of the third film located above the second electrode is removed by an etching method to form a first layer overlapping with the first electrode in a fifth step; and part of the second film and part of the first film each located above the second electrode are removed by an etching method using the first layer to form a second layer and a first unit each overlapping with the first electrode in a sixth step.
Abstract:
A high-resolution display device is provided. A display device with both high display quality and high resolution is provided. The display device includes a first display element including a first pixel electrode, a first EL layer, and a common electrode; a second display element including a second pixel electrode, a second EL layer, and the common electrode; a first insulating layer covering an end portion of the first pixel electrode and an end portion of the second pixel electrode; a second insulating layer over the first insulating layer; and a third insulating layer over the second insulating layer. The first EL layer is placed over the first pixel electrode and the third insulating layer. The second EL layer is placed over the second pixel electrode and the third insulating layer.