Abstract:
A semiconductor substrate having an upper surface with a plurality of upwardly extending fins. A memory cell formed on a first of the fins and including spaced apart source and drain regions in the first fin, with a channel region extending therebetween along top and side surfaces of the first fin, a floating gate that extends along a first portion of the channel region, a select gate that extends along a second portion of the channel region, a control gate that extends along and is insulated from the floating gate, and an erase gate that extends along and is insulated from the source region. A logic device formed on a second of the fins and including spaced apart logic source and logic drain regions in the second fin, with a logic channel region of the second fin extending therebetween, and a logic gate that extends along the logic channel region.
Abstract:
A memory cell is formed on a semiconductor substrate having an upper surface with a plurality of upwardly extending fins. First and second fins extend in one direction, and a third fin extends in an orthogonal direction. Spaced apart source and drain regions are formed in each of the first and second fins, defining a channel region extending there between in each of the first and second fins. The source regions are disposed at intersections between the third fin and the first and second fins. A floating gate is disposed laterally between the first and second fins, and laterally adjacent to the third fin, and extends along first portions of the channel regions. A word line gate extends along second portions of the channel regions. A control gate is disposed over the floating gate. An erase gate is disposed over the source regions and the floating gate.
Abstract:
A memory device that includes a plurality of ROM cells each having spaced apart source and drain regions formed in a substrate with a channel region therebetween, a first gate disposed over and insulated from a first portion of the channel region, a second gate disposed over and insulated from a second portion of the channel region, and a conductive line extending over the plurality of ROM cells. The conductive line is electrically coupled to the drain regions of a first subgroup of the ROM cells, and is not electrically coupled to the drain regions of a second subgroup of the ROM cells. Alternately, a first subgroup of the ROM cells each includes a higher voltage threshold implant region in the channel region, whereas a second subgroup of the ROM cells each lack any higher voltage threshold implant region in the channel region.
Abstract:
A memory device, and method of making the same, in which a trench is formed into a substrate of semiconductor material. The source region is formed under the trench, and the channel region between the source and drain regions includes a first portion that extends substantially along a sidewall of the trench and a second portion that extends substantially along the surface of the substrate. The floating gate is disposed in the trench, and is insulated from the channel region first portion for controlling its conductivity. A control gate is disposed over and insulated from the channel region second portion, for controlling its conductivity. An erase gate is disposed at least partially over and insulated from the floating gate. An electrically conductive coupling gate is disposed in the trench, adjacent to and insulated from the floating gate, and over and insulated from the source region.
Abstract:
A system and method to inhibit the erasing of a portion of a sector of split gate flash memory cells while allowing the remainder of the sector to be erased is disclosed. The inhibiting is controlled by control logic that applies one or more bias voltages to the portion of the sector whose erasure is to be inhibited.
Abstract:
A memory cell array having rows and columns of memory cells with respective ones of the memory cells including spaced apart source and drain regions formed in a semiconductor substrate with a channel region extending there between, a floating gate over a first portion of the channel region, a select gate over a second portion of the channel region, and an erase gate over the source region. A strap region is disposed between first and second pluralities of the columns. For one memory cell row, a dummy floating gate is disposed in the strap region, an erase gate line electrically connects together the erase gates of the memory cells in the one row and in the first plurality of columns, wherein the erase gate line is aligned with the dummy floating gate with a row direction gap between the erase gate line and the dummy floating gate.
Abstract:
A method of testing non-volatile memory cells formed on a die includes erasing the memory cells and performing a first read operation to determine a lowest read current RC1 for the memory cells and a first number N1 of the memory cells having the lowest read current RC1. A second read operation is performed to determine a second number N2 of the memory cells having a read current not exceeding a target read current RC2. The target read current RC2 is equal to the lowest read current RC1 plus a predetermined current value. The die is determined to be acceptable if the second number N2 is determined to exceed the first number N1 plus a predetermined number. The die is determined to be defective if the second number N2 is determined not to exceed the first number N1 plus the predetermined number.
Abstract:
A method of forming a device on a substrate with recessed first/third areas relative to a second area by forming a fin in the second area, forming first source/drain regions (with first channel region therebetween) by first/second implantations, forming second source/drain regions in the third area (defining second channel region therebetween) by the second implantation, forming third source/drain regions in the fin (defining third channel region therebetween) by third implantation, forming a floating gate over a first portion of the first channel region by first polysilicon deposition, forming a control gate over the floating gate by second polysilicon deposition, forming an erase gate over the first source region and a device gate over the second channel region by third polysilicon deposition, and forming a word line gate over a second portion of the first channel region and a logic gate over the third channel region by metal deposition.
Abstract:
A semiconductor substrate having an upper surface with a plurality of upwardly extending fins. A memory cell formed on a first of the fins and including spaced apart source and drain regions in the first fin, with a channel region extending therebetween along top and side surfaces of the first fin, a floating gate that extends along a first portion of the channel region, a select gate that extends along a second portion of the channel region, a control gate that extends along and is insulated from the floating gate, and an erase gate that extends along and is insulated from the source region. A logic device formed on a second of the fins and including spaced apart logic source and logic drain regions in the second fin, with a logic channel region of the second fin extending therebetween, and a logic gate that extends along the logic channel region.
Abstract:
A semiconductor substrate having an upper surface with a plurality of upwardly extending fins. A memory cell formed on a first of the fins and including spaced apart source and drain regions in the first fin, with a channel region extending therebetween along top and side surfaces of the first fin, a floating gate that extends along a first portion of the channel region, a select gate that extends along a second portion of the channel region, a control gate that extends along and is insulated from the floating gate, and an erase gate that extends along and is insulated from the source region. A logic device formed on a second of the fins and including spaced apart logic source and logic drain regions in the second fin, with a logic channel region of the second fin extending therebetween, and a logic gate that extends along the logic channel region.