Abstract:
Described is an apparatus which comprises: a plurality of bridges which are operable to drive respective signals for one or more power supply rails; a plurality of controllers; and a main controller to couple one or more controllers from the plurality of controllers to one or more bridges from the plurality of bridges.
Abstract:
A digital-to-time converter (DTC) comprises a gate controller configured to generate a gate enable signal based on first and second digital values so that the gate enable signal has a first enable period and a second enable period for each pair of a first digital value and a second digital value. A gate conditionally passes a main clock signal to a gate output in response to the gate enable signal, the gate thus providing a gated signal at a gate output. A frequency divider generates a frequency divided signal as the output signal of the digital-to-time converter based on the gated signal. The DTC may be calibrated by a time-to-digital converter connected between an input for the main clock signal and an output of a delay element of the DTC.
Abstract:
A DC/DC converter includes a switch mode converter for providing an output voltage based on an input voltage and a drive signal generator configured to to provide a drive signal for the switch mode converter. The drive signal generator is configured to switch between a non-pulse-skipping mode and a pulse-skipping mode. Moreover, the drive signal generator is configured to adapt a setting of a pulse generation such that a length of a first pulse following a pulse skipping is larger than a minimum length of a pulse in the non-pulse-skipping mode.
Abstract:
Apparatuses and methods related to time-to-digital converters (TDCs) are herein described. Generally, a time-to-digital converter is a device which measures a time period or time interval and outputs a digital value representing the measured time period. In an implementation, an apparatus is provided comprising a time-to-digital converter circuit, which further comprises a built-in self test (BIST). The built-in self test may be implemented using one or more oscillators coupled to the time-to-digital converter via one or more multiplexer devices.
Abstract:
One embodiment relates to an apparatus that includes at least one circuit block and a voltage source configured to supply a first voltage to the at least one circuit block. The apparatus also includes a power delivery unit configured to be selectively activated based on a whether a quantity of power is to be delivered from the power delivery unit to the circuit block. A control unit is configured to, upon a change in power consumption of the at least one circuit block, activate the auxiliary power delivery unit to deliver the quantity of power to the circuit block. The auxiliary power delivery unit can quickly supply large currents since it does not necessarily rely on slow control loops using voltage sensing. Rather, the auxiliary power delivery unit often delivers pre-calculated current profiles to respond to the timing characteristic of the change of power consumption and of the voltage regulator.
Abstract:
An apparatus including a circuit configured to determine a jitter of a first signal, and to determine a time interval between a feature in a second signal and a feature in the first signal based on the determined jitter.
Abstract:
Exemplary implementations of electrical circuits and systems are disclosed, and methods for signal processing including sampling and quantizing of amplitude and band limited signals implemented through a Passive Pulse Modulation Analog to Digital Converter (PMADC).
Abstract:
A synthesizer arrangement includes an oscillator, a phase detector, and a loop filter that form a phase-locked loop. The loop filter is coupled to a control unit to activate a respective set of internal states out of a plurality of sets of internal states.