Abstract:
In a described example, an apparatus includes: a package substrate having a die mount portion and lead portions spaced from the die mount portion; a semiconductor die over the die mount portion having bond pads on an active surface facing away from the package substrate; non-gold bond wires forming electrical connections between at least one of the bond pads and one of the lead portions of the package substrate; a bond stitch on bump connection formed between one of the non-gold bond wires and a bond pad of the semiconductor die, comprising a stitch bond formed on a flex stud bump; and dielectric material covering a portion of the package substrate, the semiconductor die, the non-gold bond wires, the stitch bond and the flex stud bump, forming a packaged semiconductor device.
Abstract:
Described examples include a hybrid circuit having a component. The component has a first conductive element on a substrate having a configuration and having a first periphery and having an extension at the first periphery. The component also has a dielectric on the first conductive element. The component also has a second conductive element having the configuration on the dielectric that is proximate to and aligned with the first conductive element, and has a second periphery, the extension of the first conductive element extending past the second periphery.
Abstract:
An integrated circuit and methods for packaging the integrated circuit. In one example, a method for packaging an integrated circuit includes connecting input/output pads of a first integrated circuit die to terminals of a lead frame via palladium coated copper wires. An oxygen plasma is applied to the first integrated circuit die and the palladium coated copper wires. The first integrated circuit die and the palladium coated copper wires are encapsulated in a mold compound after application of the oxygen plasma.
Abstract:
A microelectronic device contains a high voltage component having a high voltage node and a low voltage node. The high voltage node is isolated from the low voltage node by a main dielectric between the high voltage node and low voltage elements at a surface of the substrate of the microelectronic device. A lower-bandgap dielectric layer is disposed between the high voltage node and the main dielectric. The lower-bandgap dielectric layer contains at least one sub-layer with a bandgap energy less than a bandgap energy of the main dielectric. The lower-bandgap dielectric layer extends beyond the high voltage node continuously around the high voltage node. The lower-bandgap dielectric layer has an isolation break surrounding the high voltage node at a distance of at least twice the thickness of the lower-bandgap dielectric layer from the high voltage node.
Abstract:
A heated capacitor runs current through either a lower metal plate, an upper metal plate, a lower metal trace that lies adjacent to a lower metal plate, an upper metal trace that lies adjacent to an upper metal plate, or both a lower metal trace that lies adjacent to a lower metal plate and an upper metal trace that lies adjacent to an upper metal plate to generate heat from the resistance to remove moisture from a moisture-sensitive insulating layer.
Abstract:
Isolator structures for an integrated circuit with reduced effective parasitic capacitance. Disclosed embodiments include an isolator structure with parallel conductive elements forming a capacitor or inductive transformer, overlying a semiconductor structure including a well region of a first conductivity type formed within an tank region of a second conductivity type. The tank region is surrounded by doped regions and a buried doped layer of the first conductivity type, forming a plurality of diodes in series to the substrate. The junction capacitances of the series diodes have the effect of reducing the parasitic capacitance apparent at the isolator.
Abstract:
A microelectronic device contains a high voltage component having a high voltage node and a low voltage node. The high voltage node is isolated from the low voltage node by a main dielectric between the high voltage node and low voltage elements at a surface of the substrate of the microelectronic device. A lower-bandgap dielectric layer is disposed between the high voltage node and the main dielectric. The lower-bandgap dielectric layer contains at least one sub-layer with a bandgap energy less than a bandgap energy of the main dielectric. The lower-bandgap dielectric layer extends beyond the high voltage node continuously around the high voltage node. The lower-bandgap dielectric layer has an isolation break surrounding the high voltage node at a distance of at least twice the thickness of the lower-bandgap dielectric layer from the high voltage node.
Abstract:
A galvanic isolation capacitor device includes a semiconductor substrate and a PMD layer over the semiconductor substrate. The PMD layer has a first thickness. A lower metal plate is over the PMD layer and an ILD layer is on the lower metal plate; the ILD layer has a second thickness. A ratio of the first thickness to the second thickness is between about 1 and 1.55 inclusive. A first upper metal plate over the ILD layer has a first area and a second upper metal plate over the ILD layer has a second area; a ratio of the first area to the second area is greater than about 5. The galvanic isolation capacitor device can be part of a multi-chip module.
Abstract:
A microelectronic device includes a galvanic isolation component having a lower isolation element over a substrate with lower bond pads connected to the lower isolation element, a dielectric plateau over the lower isolation element that does not extend to the lower bond pads, and an upper isolation element and upper bond pads over the dielectric plateau. The upper bond pads are laterally separated from the lower bond pads by an isolation distance. The microelectronic device includes high voltage wire bonds on the upper bond pads that extend upward, within 10 degrees of vertical, for a vertical distance greater than the isolation distance. The microelectronic device further includes low voltage wire bonds on the lower bond pads that have a loop height directly over a perimeter of the substrate that is less than 5 times a wire diameter of the low voltage wire bonds.
Abstract:
Described examples include a hybrid circuit having a component. The component has a first conductive element on a substrate having a configuration and having a first periphery and having an extension at the first periphery. The component also has a dielectric on the first conductive element. The component also has a second conductive element having the configuration on the dielectric that is proximate to and aligned with the first conductive element, and has a second periphery, the extension of the first conductive element extending past the second periphery.