Abstract:
An imaging system includes an illumination device for illuminating a target. A surgical microscope receives light from the target, the surgical microscope comprising at least one optical output port at which at least a portion of the received light is provided as an output from the surgical microscope. A tunable filter receives the portion of the received light provided as the output from the surgical microscope, the tunable filter being tunable to pass a filtered portion of the received light, the filtered portion of the received light having a plurality of wavelengths selected by the tunable filter and provided as output from the tunable filter. A high-resolution, broad-bandwidth electronic camera receives the light of a plurality of wavelengths selected by the tunable filter, the electronic camera converting the light of a plurality of wavelengths selected by the tunable filter to a plurality of electrical signals. A processor processes the plurality of electrical signals to form an image of the target.
Abstract:
A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.
Abstract:
A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.
Abstract:
An imaging system includes an illumination device for illuminating a target. A surgical microscope receives light from the target, the surgical microscope comprising at least one optical output port at which at least a portion of the received light is provided as an output from the surgical microscope. A tunable filter receives the portion of the received light provided as the output from the surgical microscope, the tunable filter being tunable to pass a filtered portion of the received light, the filtered portion of the received light having a plurality of wavelengths selected by the tunable filter and provided as output from the tunable filter. A high-resolution, broad-bandwidth electronic camera receives the light of a plurality of wavelengths selected by the tunable filter, the electronic camera converting the light of a plurality of wavelengths selected by the tunable filter to a plurality of electrical signals. A processor processes the plurality of electrical signals to form an image of the target.
Abstract:
An apparatus and method for measuring mechanical properties of tissue has a stereo optical surgical microscope with at least one objective lens and at least two digital cameras such that paired images obtained from the digital cameras form stereo pairs, and a digital image processing system adapted to determine surface topography of tissue from the stereo pairs of images and a resulting surface displacement map as a result from indentation. The apparatus has an one indenter; and mechanical modeling routines stored in memory of the image processing system, the mechanical modeling routines capable of constructing computer models of mechanical properties of tissue, and fitting parameters of the computer model to observed surface displacement maps generated by coregistering surface topography of tissue with and without the indenter positioned on the tissue. In an embodiment, fitted parameters of the computer model are displayed and used to adjust a surgical plan. An apparatus and method for measuring mechanical properties of tissue has a stereo optical surgical microscope with at least one objective lens and at least two digital cameras such that paired images obtained from the digital cameras form stereo pairs, and a digital image processing system adapted to determine surface topography of tissue from the stereo pairs of images and a resulting surface displacement map as a result from indentation. The apparatus has an one indenter; and mechanical modeling routines stored in memory of the image processing system, the mechanical modeling routines capable of constructing computer models of mechanical properties of tissue, and fitting parameters of the computer model to observed surface displacement maps generated by coregistering surface topography of tissue with and without the indenter positioned on the tissue. In an embodiment, fitted parameters of the computer model are displayed and used to adjust a surgical plan.
Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
Abstract:
An apparatus and method for measuring mechanical properties of tissue has a stereo optical surgical microscope with at least one objective lens and at least two digital cameras such that paired images obtained from the digital cameras form stereo pairs, and a digital image processing system adapted to determine surface topography of tissue from the stereo pairs of images and a resulting surface displacement map as a result from indentation. The apparatus has an one indenter; and mechanical modeling routines stored in memory of the image processing system, the mechanical modeling routines capable of constructing computer models of mechanical properties of tissue, and fitting parameters of the computer model to observed surface displacement maps generated by coregistering surface topography of tissue with and without the indenter positioned on the tissue. In an embodiment, fitted parameters of the computer model are displayed and used to adjust a surgical plan. An apparatus and method for measuring mechanical properties of tissue has a stereo optical surgical microscope with at least one objective lens and at least two digital cameras such that paired images obtained from the digital cameras form stereo pairs, and a digital image processing system adapted to determine surface topography of tissue from the stereo pairs of images and a resulting surface displacement map as a result from indentation. The apparatus has an one indenter; and mechanical modeling routines stored in memory of the image processing system, the mechanical modeling routines capable of constructing computer models of mechanical properties of tissue, and fitting parameters of the computer model to observed surface displacement maps generated by coregistering surface topography of tissue with and without the indenter positioned on the tissue. In an embodiment, fitted parameters of the computer model are displayed and used to adjust a surgical plan.
Abstract:
A system and method for determining intraoperative locations of a lesion in tissue from lesion locations determined in preoperative imaging includes determining three dimensional locations of surface features of the organ in the preoperative images. A preoperative surface map is extracted from stereo images annotated with surface features from preoperative images. An intraoperative surface map of the organ is extracted from stereo images, and surface features are identified in the stereo images corresponding to surface features annotated into the preoperative surface map. Three dimensional displacements of the surface features are determined and used to constrain a computer model of deformation of the organ. In embodiments, the model of deformation is adapted or constrained to model locations and dimensions of surgical cavities using an optical flow method and/or locations of surgical instruments in the organ. The model of deformation is used to determine intraoperative locations for the lesion.
Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.