WAFER LEVEL INTEGRATED MEMS DEVICE ENABLED BY SILICON PILLAR AND SMART CAP

    公开(公告)号:US20200024137A1

    公开(公告)日:2020-01-23

    申请号:US16584752

    申请日:2019-09-26

    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.

    Semiconductor device comprising different types of microelectromechanical systems devices

    公开(公告)号:US11851323B2

    公开(公告)日:2023-12-26

    申请号:US16907607

    申请日:2020-06-22

    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device includes an interconnect structure disposed over a semiconductor substrate. A dielectric structure is disposed over the interconnect structure. A first cavity and a second cavity are disposed in the dielectric structure. A microelectromechanical system (MEMS) substrate is disposed over the dielectric structure, where the MEMS substrate comprises a first movable membrane overlying the first cavity and a second movable membrane overlying the second cavity. A first functional structure overlies the first movable membrane, where the first functional structure comprises a first material having a first chemical composition. A second functional structure overlies the second movable membrane, where the second functional structure is laterally spaced from the first functional structure, and where the second functional structure comprises a second material having a second chemical composition different than the first chemical composition.

    Piezoelectric anti-stiction structure for microelectromechanical systems

    公开(公告)号:US11365115B2

    公开(公告)日:2022-06-21

    申请号:US16558539

    申请日:2019-09-03

    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. A first piezoelectric anti-stiction structure is disposed between the movable mass and the first dielectric structure, wherein the first piezoelectric anti-stiction structure includes a first piezoelectric structure and a first electrode disposed between the first piezoelectric structure and the first dielectric structure.

    Wafer level integrated MEMS device enabled by silicon pillar and smart cap

    公开(公告)号:US10961118B2

    公开(公告)日:2021-03-30

    申请号:US16584752

    申请日:2019-09-26

    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.

    SEMICONDUCTOR DEVICE COMPRISING DIFFERENT TYPES OF MICROELECTROMECHANICAL SYSTEMS DEVICES

    公开(公告)号:US20210061647A1

    公开(公告)日:2021-03-04

    申请号:US16907607

    申请日:2020-06-22

    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device includes an interconnect structure disposed over a semiconductor substrate. A dielectric structure is disposed over the interconnect structure. A first cavity and a second cavity are disposed in the dielectric structure. A microelectromechanical system (MEMS) substrate is disposed over the dielectric structure, where the MEMS substrate comprises a first movable membrane overlying the first cavity and a second movable membrane overlying the second cavity. A first functional structure overlies the first movable membrane, where the first functional structure comprises a first material having a first chemical composition. A second functional structure overlies the second movable membrane, where the second functional structure is laterally spaced from the first functional structure, and where the second functional structure comprises a second material having a second chemical composition different than the first chemical composition.

    A SEMICONDUCTOR DEVICE HAVING MICROELECTROMECHANICAL SYSTEMS DEVICES WITH IMPROVED CAVITY PRESSURE UNIFORMITY

    公开(公告)号:US20210060610A1

    公开(公告)日:2021-03-04

    申请号:US15930570

    申请日:2020-05-13

    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device includes an interconnect structure disposed over a semiconductor substrate. A dielectric structure is disposed over the interconnect structure. A plurality of cavities are disposed in the dielectric structure. A microelectromechanical system (MEMS) substrate is disposed over the dielectric structure, where the MEMS substrate comprises a plurality of movable membranes, and where the movable membranes overlie the cavities, respectively. A plurality of fluid communication channels are disposed in the dielectric structure, where each of the fluid communication channels extend laterally between two neighboring cavities of the cavities, such that each of the cavities are in fluid communication with one another.

Patent Agency Ranking