Abstract:
Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
Abstract:
Some embodiments relate to multiple MEMS devices that are integrated together on a single substrate. A device substrate comprising first and second micro-electro mechanical system (MEMS) devices is bonded to a capping structure. The capping structure comprises a first cavity arranged over the first MEMS device and a second cavity arranged over the second MEMS device. The first cavity is filled with a first gas at a first gas pressure. The second cavity is filled with a second gas at a second gas pressure, which is different from the first gas pressure. A recess is arranged within a lower surface of the capping structure. The recess abuts the second cavity. A vent is arranged within the capping structure. The vent extends from a top of the recess to the upper surface of the capping structure. A lid is arranged within the vent and configured to seal the second cavity.
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
Abstract:
A device includes a semiconductor substrate, a plurality of micro-lenses disposed on the substrate, each micro-lens being configured to direct light radiation to a layer beneath the plurality of micro-lenses. The device further includes a transparent layer positioned between the plurality of micro-lenses and the substrate, the transparent layer comprising a structure that is configured to block light radiation that is traveling towards a region between adjacent micro-lenses, wherein the structure and the transparent material are coplanar at respective top surfaces and bottom surfaces thereof.
Abstract:
A display apparatus is disclosed. The display apparatus includes a sensor layer including a plurality of sensors, a pixel layer disposed on the sensor layer and including a plurality of pixel areas and a plurality of pixels in the pixel areas, and an opaque layer disposed between the sensor layer and the pixel layer and including holes corresponding to at least one of the pixel areas.
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.
Abstract:
A sensing apparatus is disclosed. The sensing apparatus includes an image sensor; a collimator above the image sensor, the collimator having an array of apertures; an optical filtering layer between the collimator and the image sensor, wherein the optical filtering layer is configured to filter a portion of light transmitted through the array of apertures; and an illumination layer above the collimator.