Abstract:
The present disclosure relates to a method of forming a multi-dimensional integrated chip having tiers connected in a front-to-back configuration, and an associated apparatus. In some embodiments, the method is performed by forming one or more semiconductor devices within a first substrate, forming one or more image sensing elements within a second substrate, and bonding a first dielectric structure over the first substrate to a back-side of the second substrate by way of a bonding structure. An inter-tier interconnect structure, comprising a plurality of different segments, respectively having sidewalls with different sidewall angles, is formed to extend through the bonding structure and the second substrate. The inter-tier interconnect structure is configured to electrically couple a first metal interconnect layer over the first substrate to a second metal interconnect layer over the second substrate.
Abstract:
The present disclosure relates to a method of forming a multi-dimensional integrated chip having tiers connected in a front-to-back configuration, and an associated apparatus. In some embodiments, the method is performed by forming one or more semiconductor devices within a first substrate, forming one or more image sensing elements within a second substrate, and bonding a first dielectric structure over the first substrate to a back-side of the second substrate by way of a bonding structure. An inter-tier interconnect structure, comprising a plurality of different segments, respectively having sidewalls with different sidewall angles, is formed to extend through the bonding structure and the second substrate. The inter-tier interconnect structure is configured to electrically couple a first metal interconnect layer over the first substrate to a second metal interconnect layer over the second substrate.
Abstract:
A method for fabricating an image-sensor device is provided. The method includes forming a radiation-sensing region and a doped isolation region in a semiconductor substrate. The doped isolation region is adjacent to the radiation-sensing region. The method also includes thinning the semiconductor substrate such that the radiation-sensing region and the doped isolation region are exposed. The method further includes partially removing the doped isolation region to form a recess. In addition, the method includes forming a negatively charged film over an interior surface of the recess and a surface of the radiation-sensing exposed after the thinning of the semiconductor substrate.
Abstract:
Embodiments of mechanisms of for forming an image-sensor device are provided. The image-sensor device includes a substrate having a front surface and a back surface. The image-sensor device also includes a radiation-sensing region operable to detect incident radiation that enters the substrate through the back surface. The image-sensor device further includes a doped isolation region formed in the substrate and adjacent to the radiation-sensing region. In addition, the image-sensor device includes a deep-trench isolation structure formed in the doped isolation region. The deep-trench isolation structure includes a trench extending from the back surface and a negatively charged film covering the trench.
Abstract:
Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a first isolation structure on a first surface of a substrate. A second isolation structure is formed into the first surface of the substrate. Sidewalls of the first isolation structure are disposed laterally between inner sidewalls of the second isolation structure. A bond pad is formed in the substrate such that the second isolation structure continuously laterally wraps around the bond pad.
Abstract:
Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes a photodetector disposed in a semiconductor substrate. An interlayer dielectric (ILD) structure is disposed on a first side of the semiconductor substrate. A storage node is disposed in the semiconductor substrate and spaced from the photodetector, where the storage node is spaced from the first side by a first distance. A first isolation structure is disposed in the semiconductor substrate and between the photodetector and the storage node, where the first isolation structure extends into the semiconductor substrate from a second side of the semiconductor substrate that is opposite the first side, and where the first isolation structure is spaced from the first side by a second distance that is less than the first distance.
Abstract:
An image sensor device includes a pixel array, a control circuit, an interconnect structure, and a conductive layer. The pixel array is disposed on a device substrate within a pixel region. The control circuit disposed on the device substrate within a circuit region, the control circuit being adjacent and electrically coupled to the pixel array. The interconnect structure overlies and electrically connects the control circuit and the pixel array. The interconnect structure includes interconnect metal layers separated from each other by inter-metal dielectric layers and vias that electrically connect between metal traces of the interconnect layers. The conductive layer disposed over the interconnect structure and electrically connected to the interconnect structure by an upper via disposed through an upper inter-metal dielectric layer therebetween. The conductive layer extends laterally within outermost edges of the interconnect structure and within the pixel region and the circuit region.
Abstract:
A method for forming an FSI image sensor device structure is provided. The method includes forming a pixel region in a substrate and forming a dielectric layer over the substrate. The method includes forming a trench through the dielectric layer, and the trench includes a top portion and a bottom portion, and the trench is directly above the pixel region. The method includes forming a protection layer in the bottom portion of the trench and enlarging a top width of the top portion of the trench, and the trench has a wide top portion and a narrow bottom portion. The wide top portion has top sidewall surfaces, the narrow bottom portion has bottom sidewall surfaces, and the top sidewall surfaces taper gradually toward the bottom sidewall surfaces. The method includes filling a transparent dielectric layer in the trench to form a light pipe.
Abstract:
The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method may be performed by forming a plurality of interconnect layers within a dielectric structure over an upper surface of a substrate. A passivation structure is formed over the dielectric structure. The passivation structure has sidewalls and a horizontally extending surface defining has a recess within an upper surface of the passivation structure. A bond pad is formed having a lower surface overlying the horizontally extending surface and one or more protrusions extending outward from the lower surface. The one or more protrusions extend through one or more openings within the horizontally extending surface to contact a first one of the plurality of interconnect layers. An upper passivation layer is deposited on sidewalls and an upper surface of the bond pad and on sidewalls and the upper surface of the passivation structure.
Abstract:
A frontside illuminated (FSI) image sensor with a reflector is provided. A photodetector is buried in a sensor substrate. A support substrate is arranged under and bonded to the sensor substrate. The reflector is arranged under the photodetector, between the sensor and support substrates, and is configured to reflect incident radiation towards the photodetector. A method for manufacturing the FSI image sensor and the reflector is also provided.