Abstract:
A method includes placing a device having a titanium nitride layer into a chamber. The device also has a mask that includes a photoresist material and an aluminum copper hardmask. The method also includes performing an ashing process on the mask using the chamber. The method further includes, after the ashing process, performing an etching process using the chamber to etch through portions of the titanium nitride layer. Performing the etching process includes flowing a gas mixture containing tetrafluoromethane (CF4) and oxygen gas (O2) into the chamber at a temperature of at least about 200° C.
Abstract:
A microelectronic device containing a piezoelectric component is formed sputtering an adhesion layer of titanium on a substrate by an ionized metal plasma (IMP) process. The adhesion layer is oxidized so that at least a portion of the titanium is converted to a layer of substantially stoichiometric titanium dioxide (TiO2) at a top surface of the adhesion layer. A layer of platinum is formed on the titanium dioxide of the adhesion layer; the layer of platinum has a (111) crystal orientation and an X-ray rocking curve FWHM value of less than 3 degrees. A layer of piezoelectric material is formed on the layer of platinum. The piezoelectric material may include lead zirconium titanate.
Abstract:
An apparatus includes a lens material forming a lens. The apparatus also includes a piezoelectric capacitor over the lens material, where the piezoelectric capacitor is configured to change a shape of the lens material in response to a voltage across the piezoelectric capacitor to thereby change a focus of the lens. The apparatus further includes at least one stress compensation ring over a portion of the lens material and over at least a portion of the piezoelectric capacitor. The at least one stress compensation ring is configured to at least partially reduce bending of the lens material caused by stress on or in the lens material.
Abstract:
A piezoelectric optical micro-electro-mechanical systems (POMEMS) device includes a glass layer having a bottom surface and a top surface. The device may also include an upper moisture barrier layer having a top surface and a bottom surface in which the bottom surface of the top moisture barrier layer is substantially coextensive with and interfaces with the top surface of the glass layer. A piezo stack may be attached above the upper moisture barrier layer. The device may also include a lower moisture barrier layer having a bottom surface and a top surface. The top surface of the lower moisture barrier layer is substantially coextensive with and interfaces with the bottom surface of the glass layer. A semiconductor substrate may be attached below the bottom moisture barrier layer.
Abstract:
A microelectronic device containing a piezoelectric thin film element is formed by oxidizing a top surface of a piezoelectric layer with an oxygen plasma, and subsequently forming an etch mask containing photoresist on the oxidized top surface. The etch mask is conditioned with an oven bake followed by a UV bake. The piezoelectric layer is etched using a three step process: a first step includes a wet etch of an aqueous solution of about 5% NH4F, about 1.2% HF, and about 18% HCl, maintaining a ratio of the HCl to the HF of about 15.0, which removes a majority of the piezoelectric layer. A second step includes an agitated rinse. A third step includes a short etch in the aqueous solution of NH4F, HF, and HCl.
Abstract:
A method includes placing a device having a titanium nitride layer into a chamber. The device also has a mask that includes a photoresist material and an aluminum copper hardmask. The method also includes performing an ashing process on the mask using the chamber. The method further includes, after the ashing process, performing an etching process using the chamber to etch through portions of the titanium nitride layer. Performing the etching process includes flowing a gas mixture containing tetrafluoromethane (CF4) and oxygen gas (O2) into the chamber at a temperature of at least about 200° C.
Abstract:
A microelectronic device containing a piezoelectric thin film element is formed by oxidizing a top surface of a piezoelectric layer with an oxygen plasma, and subsequently forming an etch mask containing photoresist on the oxidized top surface. The etch mask is conditioned with an oven bake followed by a UV bake. The piezoelectric layer is etched using a three step process: a first step includes a wet etch of an aqueous solution of about 5% NH4F, about 1.2% HF, and about 18% HCl, maintaining a ratio of the HCl to the HF of about 15.0, which removes a majority of the piezoelectric layer. A second step includes an agitated rinse. A third step includes a short etch in the aqueous solution of NH4F, HF, and HCl.
Abstract:
A method includes forming a piezoelectric optical micro-electromechanical system (MEMS) device having a piezoelectric capacitor over a lens material. The lens material forms a lens, and the piezoelectric capacitor is configured to change a shape of the lens material in order to change a focus of the lens. The piezoelectric capacitor includes first and second electrodes separated by at least one piezoelectric material. The method also includes performing a first anneal on the piezoelectric optical MEMS device in nitrogen gas and performing a second anneal on the piezoelectric optical MEMS device in oxygen gas after performing the first anneal. The method further includes depositing a protective oxide layer over the lens material and the piezoelectric capacitor after performing the second anneal. The first anneal in the nitrogen gas causes the piezoelectric optical MEMS device to be substantially free of discharge defects.