摘要:
The present invention focuses on a structure in which an auxiliary wiring for increasing the conductivity of an upper electrode is provided on the substrate side. The conductive auxiliary wiring of a light-emitting device is provided over a substrate, and an upper portion of the auxiliary wiring protrudes in a direction parallel to the substrate. Further, an EL layer formed in a region including a lower electrode layer and the auxiliary wiring is physically divided by the auxiliary wiring. An upper electrode layer formed in a manner similar to that of the lower electrode layer may be electrically connected to at least part of a side surface of the auxiliary wiring. Such an auxiliary wiring may be used in a lighting device and a display device.
摘要:
There are provided a structure of a semiconductor device in which low power consumption is realized even in a case where a size of a display region is increased to be a large size screen and a manufacturing method thereof. A gate electrode in a pixel portion is formed as a three layered structure of a material film containing mainly W, a material film containing mainly Al, and a material film containing mainly Ti to reduce a wiring resistance. A wiring is etched using an IPC etching apparatus. The gate electrode has a taper shape and the width of a region which becomes the taper shape is set to be 1 μm or more.
摘要:
The wiring of the present invention has a layered structure that includes a first conductive layer (first layer) having a first width and made of one or a plurality of kinds of elements selected from W and Mo, or an alloy or compound mainly containing the element, a low-resistant second conductive layer (second layer) having a second width smaller than the first width, and made of an alloy or a compound mainly containing Al, and a third conductive layer (third layer) having a third width smaller than the second width, and made of an alloy or compound mainly containing Ti. With this constitution, the present invention is fully ready for enlargement of a pixel portion. At least edges of the second conductive layer have a taper-shaped cross-section. Because of this shape, satisfactory coverage can be obtained.
摘要:
For forming a gate electrode, a conductive film with low resistance including Al or a material containing Al as its main component and a conductive film with low contact resistance for preventing diffusion of Al into a semiconductor layer are laminated, and the gate electrode is fabricated by using an apparatus which is capable of performing etching treatment at high speed.
摘要:
In a semiconductor device, typically an active matrix display device, the structure of TFTs arranged in the respective circuits are made suitable in accordance with the function of the circuit, and along with improving the operating characteristics and the reliability of the semiconductor device, the manufacturing cost is reduced and the yield is increased by reducing the number of process steps. A semiconductor device has a semiconductor layer, an insulating film formed contacting the semiconductor layer, and a gate electrode having a tapered portion on the insulating film, in the semiconductor device, the semiconductor layer has a channel forming region, a first impurity region for forming a source region or a drain region and containing a single conductivity type impurity element, and a second impurity region for forming an LDD region contacting the channel forming region, a portion of the second impurity region is formed overlapping a gate electrode, and the concentration of the single conductivity type impurity element contained in the second impurity region becomes larger with distance from the channel forming region.
摘要:
There is provided an inexpensive light emitting device and an electronic instrument using the same. In this invention, photolithography steps relating to manufacture of a transistor are reduced, so that the yield of the light emitting device is improved and the manufacturing period thereof is shortened. A feature is that a gate electrode is formed of conductive films of plural layers, and by using the selection ratio of those at the time of etching, the concentration of an impurity region formed in an active layer is adjusted.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
A high reliability semiconductor display device is provided. A semiconductor layer in the semiconductor display device has a channel forming region, an LDD region, a source region, and a drain region, and the LDD region overlaps a first gate electrode, sandwiching a gate insulating film.
摘要:
A highly reliable semiconductor display device is provided. The semiconductor display device has a channel forming region, an LDD region, and a source region and a drain region in a semiconductor layer, and the LDD region overlaps with a first gate electrode, sandwiching a gate insulating film.
摘要:
A light emitting display device comprises a thin film transistor formed over a substrate, a first insulating film comprising an organic material and formed over the thin film transistor, a second insulating film comprising at least one material selected from the group consisting of aluminum nitride, aluminum nitride oxide, and aluminum oxynitride formed over the first insulating film, an anode formed in contact with the second insulating film, a light emitting layer formed over the anode, and a cathode formed over the light emitting layer.