Abstract:
A layout pattern decomposition method includes following steps. A layout pattern is received. The layout pattern includes a plurality of features, and an edge-to-edge space is respectively defined in between two adjacent features. A sum of a width of the edge-to-edge space and a width of the feature on a left side of the edge-to-edge space and a sum of the width of the edge-to-edge space and a width of the feature on a right side of the edge-to-edge space are respectively calculated. The sums and a predetermined value are respectively compared. When any one of the sums is smaller than the predetermined value, the two features on the two sides of the edge-to-edge space are colored by a first color and alternatively a second color. The features including the first color are assigned to a first pattern and the features including the second color to a second pattern.
Abstract:
A method of forming trenches is provided. A first layer, a second layer and a third layer are formed on the substrate. A patterned third layer with a plurality of third trenches is formed. A spacer is formed on sidewalls of the third trenches, following by removing a portion of the patterned third layer between the third trenches. By using the spacer and the patterned third layer as a mask, a patterned second layer with a plurality of second trenches is formed. Next, the patterned third layer and the spacer are completely removed, and a block layer is formed on the patterned second layer, filling into the at least one second trench to separate said second trench into at least two parts. The first layer is patterned by using the patterned second layer and the block layer as a mask to form a patterned first layer with first trenches.
Abstract:
A method of optical proximity correction executed by a computer system for modifying line patterns includes the following steps. First, providing an integrated circuit layout with parallel line patterns and interconnect patterns disposed corresponding to the parallel line patterns. Then, using the computer to modify the integrated circuit layout based on a position of the interconnect patterns so as to generate a convex portion and a concave portion respectively on two sides of each of the parallel line patterns. Portions of the line pattern in front of and behind the convex portion and the concave portion are straight lines and have an identical critical dimension.
Abstract:
A method for forming a memory device includes the steps of providing a substrate, forming an isolation structure in the substrate to define a plurality of active regions in the substrate, the active regions respectively comprising two terminal portions and a central portion between the terminal portions, forming a plurality of island features on the substrate, wherein each of the island features covers two of the terminals portions respectively belonging to two of the active regions, performing a first etching process, using the island features as an etching mask to etch the substrate to define a plurality of island structures and a first recessed region surrounding the island structures on the substrate, and removing the island features to expose the island structures.
Abstract:
A method for forming a memory device is disclosed, including providing a substrate, forming an isolation structure and plural active regions in the substrate, forming a plurality of island features on the substrate respectively covering two of the terminal portions of the active regions, using the island features as an etching mask to etch the substrate to perform a first etching process to define a first recessed region and plural island structures on the substrate. The island structures respectively comprise the two terminal portions of the active regions and the first recessed region comprises the central portions of the active regions.
Abstract:
A method of optical proximity correction executed by a computer system for modifying line patterns includes the following steps. First, providing an integrated circuit layout with parallel line patterns and interconnect patterns disposed corresponding to the parallel line patterns. Then, using the computer to modify the integrated circuit layout based on a position of the interconnect patterns so as to generate a convex portion and a concave portion respectively on two sides of each of the parallel line patterns. Portions of the line pattern in front of and behind the convex portion and the concave portion are straight lines and have an identical critical dimension.
Abstract:
A method of decomposing pattern layout for generating patterns on photomasks is disclosed. The method includes decomposing features of an integrated circuit layout into discrete patterns based on the relation between these features. The features include first features and second features. The first features are then classified into a first feature pattern and a second feature pattern, and the second features are classified into third, fourth, fifth and sixth feature patterns. The spacings of the second features in the fifth and sixth feature patterns are greater than a minimum exposure limits. Finally, the first feature pattern is outputted to a first photomask, the second feature pattern is outputted to a second photomask, the third and fifth feature patterns are outputted to a third photomask, and the fourth and sixth feature patterns are outputted to a fourth photomask.
Abstract:
An optical proximity correction (OPC) process is provided. The method comprising receiving a first pattern corresponding to a first structure of a semiconductor structure, and a second pattern corresponding to a second structure of said semiconductor structure. Next, a first OPC process is performed for the first pattern to obtain a revised first pattern, wherein the revised first pattern has a first shift regarding to the first pattern. A second OPC process is performed for the second pattern to obtain a revised second pattern, wherein the second OPC process comprises moving the second pattern according to the first shift.
Abstract:
A method for forming patterns is provided in the present invention. The process includes the steps of using a first mask to perform a first exposure process to a photoresist, using a second mask to perform a second exposure process to the photoresist, wherein the corners of the second opening patterns in the second mask and the corners of the first opening patterns in the first mask overlap each other, and performing a development process to remove the unexposed portions of the photoresist in the two exposure processes to form staggered hole patterns therein.
Abstract:
A method for forming patterns is provided in the present invention. The process includes the steps of using a first mask to perform a first exposure process to a photoresist, using a second mask to perform a second exposure process to the photoresist, wherein the corners of the second opening patterns in the second mask and the corners of the first opening patterns in the first mask overlap each other, and performing a development process to remove the unexposed portions of the photoresist in the two exposure processes to form staggered hole patterns therein.