Abstract:
A method of decomposing pattern layout for generating patterns on photomasks is disclosed. The method includes decomposing features of an integrated circuit layout into discrete patterns based on the relation between these features. The features include first features and second features. The first features are then classified into a first feature pattern and a second feature pattern, and the second features are classified into third, fourth, fifth and sixth feature patterns. The spacings of the second features in the fifth and sixth feature patterns are greater than a minimum exposure limits. Finally, the first feature pattern is outputted to a first photomask, the second feature pattern is outputted to a second photomask, the third and fifth feature patterns are outputted to a third photomask, and the fourth and sixth feature patterns are outputted to a fourth photomask.
Abstract:
A method of decomposing pattern layout for generating patterns on photomasks is disclosed. The method includes decomposing features of an integrated circuit layout into discrete patterns based on the relation between these features. The features include first features and second features. The first features are then classified into a first feature pattern and a second feature pattern, and the second features are classified into third, fourth, fifth and sixth feature patterns. The spacings of the second features in the fifth and sixth feature patterns are greater than a minimum exposure limits. Finally, the first feature pattern is outputted to a first photomask, the second feature pattern is outputted to a second photomask, the third and fifth feature patterns are outputted to a third photomask, and the fourth and sixth feature patterns are outputted to a fourth photomask.
Abstract:
A semiconductor IC layout structure includes a plurality of first active regions arranged along a second direction, a plurality of second active regions arranged along the second direction, a plurality of gate structures extending along a first direction and respectively straddling the first active regions and the second active regions, a plurality of first conductive structures extending along the first direction, and a plurality of second conductive structures formed on the gate structures. The second active regions are isolated from the first active regions. The first direction is perpendicular to the second direction. The first conductive structures are formed on the first active regions and the second active regions. The second conductive structures include a plurality of slot-type second conductive structures extended along the second direction and a plurality of island-type second conductive structures formed on the gate structures.
Abstract:
An integrated circuits structure includes a semiconductor substrate, at least an non-planar field effect transistor (FET) device formed on the semiconductor substrate, and an interconnection structure formed on the semiconductor substrate. The non-planar FET device includes a plurality of fins and a gate electrode. The interconnection structure includes a plurality of first group metals and a plurality of second group metals. The first group metals are formed on the non-planar FET and the second group metals are formed on the first group metals. The first group metals include a first metal pitch and the second group metals include a second metal pitch. The second metal pitch is 1.2-1.5 times to the first metal pitch.
Abstract:
A measurement mark structure includes a mark pattern and a pair of assistant bars positioned at two opposite sides of the mark pattern. The mark pattern includes a plurality of segments. The segments of the mark pattern are arranged along a first direction and the pair of the assistant bars are expend along the first direction.
Abstract:
An integrated circuit process includes the following steps. A substrate including a first area and a second area is provided. A plurality of line patterns cover the substrate of the first area, and a sacrificial line pattern covers the substrate of the second area, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern. The present invention also provides an integrated circuit formed by said process. A substrate includes a first area and a second area; a plurality of line patterns cover the substrate of the first area; a slot pattern is in the substrate of the second area, wherein these line patterns are orthogonal to the slot pattern. Additionally, a plurality of line patterns cover the substrate; a sacrificial line pattern is at ends of the line patterns, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern.
Abstract:
An integrated circuit process includes the following steps. A substrate including a first area and a second area is provided. A plurality of line patterns cover the substrate of the first area, and a sacrificial line pattern covers the substrate of the second area, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern. The present invention also provides an integrated circuit formed by said process. A substrate includes a first area and a second area; a plurality of line patterns cover the substrate of the first area; a slot pattern is in the substrate of the second area, wherein these line patterns are orthogonal to the slot pattern. Additionally, a plurality of line patterns cover the substrate; a sacrificial line pattern is at ends of the line patterns, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern.
Abstract:
A semiconductor IC layout structure includes a plurality of first active regions arranged along a second direction, a plurality of second active regions arranged along the second direction, a plurality of gate structures extending along a first direction and respectively straddling the first active regions and the second active regions, a plurality of first conductive structures extending along the first direction, and a plurality of second conductive structures formed on the gate structures. The second active regions are isolated from the first active regions. The first direction is perpendicular to the second direction. The first conductive structures are formed on the first active regions and the second active regions. The second conductive structures include a plurality of slot-type second conductive structures extended along the second direction and a plurality of island-type second conductive structures formed on the gate structures.
Abstract:
A semiconductor integrated circuit layout structure includes a first active region, a second active region isolating from the first active region, a gate structure straddling the first active region and the second active region, and a plurality of conductive structures. The first active region at two opposite sides of the gate structure respectively forms a first source region and a first drain region. The second active region at two opposite sides of the gate structure respectively forms a second source region and a second drain region. The conductive structures include a plurality of slot-type conductive structures and one island-type conductive structure. The slot-type conductive structures are respectively formed on the first source region, the first drain region, the second source region and the second drain region. The island-type conductive structure is formed on the gate structure.
Abstract:
An integrated circuit process includes the following steps. A substrate including a first area and a second area is provided. A plurality of line patterns cover the substrate of the first area, and a sacrificial line pattern covers the substrate of the second area, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern. The present invention also provides an integrated circuit formed by said process. A substrate includes a first area and a second area; a plurality of line patterns cover the substrate of the first area; a slot pattern is in the substrate of the second area, wherein these line patterns are orthogonal to the slot pattern. Additionally, a plurality of line patterns cover the substrate; a sacrificial line pattern is at ends of the line patterns, wherein these line patterns separate from and are orthogonal to the sacrificial line pattern.