摘要:
A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
摘要:
A sense amplifier circuit includes a sense amplifier, a switch and a temperature compensation circuit. The temperature compensation circuit provides a control signal having a positive temperature coefficient, based on which the switch provides reference impedance for temperature compensation. The sense amplifier includes a first input end coupled to a target bit and a second input end coupled to the switch. The sense amplifier outputs a sense amplifier signal based on the reference impedance and the impedance of the target bit.
摘要:
A semiconductor device includes a PMOS region and a NMOS region on a substrate, a first fin-shaped structure on the PMOS region, a first single diffusion break (SDB) structure in the first fin-shaped structure, a first gate structure on the first SDB structure, and a second gate structure on the first fin-shaped structure. Preferably, the first gate structure and the second gate structure are of different materials and the first gate structure disposed directly on top of the first SDB structure is a polysilicon gate while the second gate structure disposed on the first fin-shaped structure is a metal gate in the PMOS region.
摘要:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
摘要:
An oxide semiconductor transistor includes an oxide semiconductor channel layer, a metal gate, a gate insulation layer, an internal electrode, and a ferroelectric material layer. The metal gate is disposed on the oxide semiconductor channel layer. The gate insulation layer is disposed between the metal gate and the oxide semiconductor channel layer. The internal electrode is disposed between the gate insulation layer and the metal gate. The ferroelectric material layer is disposed between the internal electrode and the metal gate. The ferroelectric material layer in the oxide semiconductor transistor of the present invention is used to enhance the electrical characteristics of the oxide semiconductor transistor.
摘要:
A bottom-pinned spin-orbit torque magnetic random access memory (SOT-MRAM) is provided in the present invention, including a substrate, a bottom electrode layer on the substrate, a magnetic tunnel junction (MTJ) on the bottom electrode layer, a spin-orbit torque (SOT) layer on the MTJ, a capping layer on the SOT layer, and an injection layer on the capping layer, wherein the injection layer is divided into individual first part and second part, and the first part and the second part are connected respectively with two ends of the capping layer.
摘要:
A semiconductor device includes a PMOS region and a NMOS region on a substrate, a first fin-shaped structure on the PMOS region, a first single diffusion break (SDB) structure in the first fin-shaped structure, a first gate structure on the first SDB structure, and a second gate structure on the first fin-shaped structure. Preferably, the first gate structure and the second gate structure are of different materials and the first gate structure disposed directly on top of the first SDB structure is a polysilicon gate while the second gate structure disposed on the first fin-shaped structure is a metal gate in the PMOS region.
摘要:
A memory device includes a substrate; an active area extending along a first direction on the substrate; a gate line traversing the active area and extending along a second direction that is not parallel to the first direction; a source doped region in the active area and on a first side of the gate line; a main source line extending along the first direction; a source line extension coupled to the main source line and extending along the second direction; a drain doped region in the active area and on a second side of the gate line that is opposite to the first side; and a data storage element electrically coupled to the drain doped region. The main source line is electrically connected to the source doped region via the source line extension.
摘要:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
摘要:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.