Abstract:
Provided is a semiconductor device including a memory gate structure and a select gate structure. The memory gate structure is closely adjacent to the select gate structure. Besides, an air gap encapsulated by an insulating layer is disposed between the memory gate structure and the select gate structure.
Abstract:
A flash cell forming process includes the following steps. A first gate is formed on a substrate. A first spacer is formed at a side of the first gate, where the first spacer includes a bottom part and a top part. The bottom part is removed, thereby an undercut being formed. A first selective gate is formed beside the first spacer and fills into the undercut. The present invention also provides a flash cell formed by said flash cell forming process. The flash cell includes a first gate, a first spacer and a first selective gate. The first gate is disposed on a substrate. The first spacer is disposed at a side of the first gate, where the first spacer has an undercut at a bottom part, and therefore exposes the substrate. The first selective gate is disposed beside the first spacer and extends into the undercut.
Abstract:
A semiconductor process is described. A semiconductor substrate having a memory area, a first device area and a second device area is provided. A patterned charge-trapping layer is formed on the substrate, covering the memory area and the second device area but exposing the first device area. A first gate oxide layer is formed in the first device area. The charge-trapping layer in the second device area is removed. A second gate oxide layer is formed in the second device area.
Abstract:
A layout structure for memory devices includes a plurality of first gate patterns, a plurality of first landing pad patterns, a plurality of dummy patterns, a plurality of second landing pad patterns, and a plurality of second gate patterns. The first landing pad patterns are parallel with each other and electrically connected to the first gate patterns. The dummy patterns and the first landing pad patterns are alternately arranged, and the second landing pad patterns are respectively positioned in between one first landing pad pattern and one dummy pattern. The second gate patterns are electrically connected to the second landing pad patterns.