Abstract:
A manufacturing method of a semiconductor device includes the following steps. A plurality of select gates are formed on a memory region of a semiconductor substrate. Two charge storage structures are formed between two adjacent select gates. A source region is formed in the semiconductor substrate, and the source region is formed between the two adjacent select gates. An insulation block is formed between the two charge storage structures and formed on the source region. A memory gate is formed on the insulation block, and the memory gate is connected to the two charge storage structures.
Abstract:
A semiconductor structure includes a substrate and a plurality of memory cells disposed on the substrate. Each memory cell includes a gate structure. The gate structures are spaced from each other by a spacing S. Each gate structure includes a dielectric layer and a gate electrode. The dielectric layer has an U-shape and defines an opening toward upside. The gate electrode is disposed in the opening. Each gate structure has a length L. A ratio of S/L is smaller than 1.
Abstract:
The present invention provides a memory cell, which includes a substrate, a gate dielectric layer, a patterned material layer, a selection gate and a control gate. The gate dielectric layer is disposed on the substrate. The patterned material layer is disposed on the substrate, wherein the patterned material layer comprises a vertical portion and a horizontal portion. The selection gate is disposed on the gate dielectric layer and atone side of the vertical portion of the patterned material layer. The control gate is disposed on the horizontal portion of the patterned material layer and at another side of the vertical portion, wherein the vertical portion protrudes over a top of the selection gate. The present invention further provides another embodiment of a memory cell and manufacturing methods thereof.
Abstract:
A flash memory structure includes a memory gate on a substrate, a select gate adjacent to the memory gate, and an oxide-nitride spacer between the memory gate and the select gate, where the oxide-nitride spacer further includes an oxide layer and a nitride layer having an upper nitride portion and a lower nitride portion, and the upper nitride portion is thinner than the lower nitride portion.
Abstract:
A layout structure for memory devices includes a plurality of first gate patterns, a plurality of first landing pad patterns, a plurality of dummy patterns, a plurality of second landing pad patterns, and a plurality of second gate patterns. The first landing pad patterns are parallel with each other and electrically connected to the first gate patterns. The dummy patterns and the first landing pad patterns are alternately arranged, and the second landing pad patterns are respectively positioned in between one first landing pad pattern and one dummy pattern. The second gate patterns are electrically connected to the second landing pad patterns.
Abstract:
A flash memory structure includes a memory gate on a substrate, a select gate adjacent to the memory gate, and an oxide-nitride spacer between the memory gate and the select gate, where the oxide-nitride spacer further includes an oxide layer and a nitride layer having an upper nitride portion and a lower nitride portion, and the upper nitride portion is thinner than the lower nitride portion.
Abstract:
A method for fabricating non-volatile memory device is disclosed. The method includes the steps of: providing a substrate having a stack structure thereon; performing a first oxidation process to form a first oxide layer on the substrate and the stack structure; etching the first oxide layer for forming a first spacer adjacent to the stack structure; performing a second oxidation process to form a second oxide layer on the substrate; forming a dielectric layer on the first spacer and the second oxide layer; and etching the dielectric layer for forming a second spacer.
Abstract:
A semiconductor process is described. A semiconductor substrate having a memory area, a first device area and a second device area is provided. A patterned charge-trapping layer is formed on the substrate, covering the memory area and the second device area but exposing the first device area. A first gate oxide layer is formed in the first device area. The charge-trapping layer in the second device area is removed. A second gate oxide layer is formed in the second device area.
Abstract:
The present invention provides a memory cell, which includes a substrate, a gate dielectric layer, a patterned material layer, a selection gate and a control gate. The gate dielectric layer is disposed on the substrate. The patterned material layer is disposed on the substrate, wherein the patterned material layer comprises a vertical portion and a horizontal portion. The selection gate is disposed on the gate dielectric layer and atone side of the vertical portion of the patterned material layer. The control gate is disposed on the horizontal portion of the patterned material layer and at another side of the vertical portion, wherein the vertical portion protrudes over a top of the selection gate. The present invention further provides another embodiment of a memory cell and manufacturing methods thereof.
Abstract:
Provided is a semiconductor device including a memory gate structure and a select gate structure. The memory gate structure is closely adjacent to the select gate structure. Besides, an air gap encapsulated by an insulating layer is disposed between the memory gate structure and the select gate structure.