Abstract:
A method for fabricating semiconductor device is disclosed. Preferably, two hard masks are utilized to define the width of the first gate (may serve for a control gate) and the width of the second gate (may serve for a select gate). The widths are thus well controlled. For example, in an embodiment, the width of the select gate may be adjusted in advance as desired, and the select gate is protected by the second hard mask during an etch process, so as to obtain a select gate which upper portion has an appropriate width. Accordingly the semiconductor device would still have an excellent performance upon miniaturization.
Abstract:
A method for manufacturing a silicon-oxide-nitride-oxide-silicon non-volatile memory cell includes following steps. An implant region is formed in a substrate. A first oxide layer, a nitride layer, and a second oxide layer are formed and stacked on the substrate. A density of the second oxide layer is higher than a density of the first oxide layer. A first photoresist pattern is formed on the second oxide layer and corresponding to the implant region. A first wet etching process is then performed to form an oxide hard mask. A second wet etching process is performed to remove the nitride layer exposed by the oxide hard mask to form a nitride pattern. A cleaning process is then performed to remove the oxide hard mask and the first oxide layer exposed by the nitride pattern, and a gate oxide layer is then formed on the nitride pattern.
Abstract:
A semiconductor device including a first gate structure and a second gate structure immediately adjacent to each other with a spacer therebetween. Line width of the top of the second gate structure is not less than that of the bottom thereof. A fabrication method thereof is also disclosed. A transient first gate structure and a temporary gate structure are formed by etching through a first hard mask. A second gate structure is formed between a first spacer and a second spacer opposite to each other and disposed respectively on the transient first gate structure and temporary gate structure. The second gate structure is covered with a second hard mask. An etch process is performed through a patterned photoresist layer to remove exposed first hard mask and temporary gate structure and to partially remove exposed portion of first hard mask and transient first gate structure to form the first gate structure.
Abstract:
A method of forming a flash memory cell includes the following steps. A first dielectric layer and a floating gate layer are deposited on a substrate sequentially. Three blocking structures having oblique sidewalls broaden from bottom to top penetrating through the first dielectric layer and the floating gate layer are formed. A first part and a second part of the floating gate layer between two adjacent blocking structures are etched respectively, so that a first floating gate having two sharp top corners and oblique sidewalls, and a second floating gate having two sharp top corners and oblique sidewalls, are formed. The three blocking structures are removed. A first isolating layer and a first selective gate covering the first floating gate are formed and a second isolating layer and a second selective gate covering the second floating gate are formed. A flash memory cell formed by said method is also provided.
Abstract:
A method for fabricating a physically unclonable function (PUF) device includes the steps of first defining a PUF cell region on a substrate and then performing a process to form a defect on the PUF cell region. Preferably, the formation of the defect could be accomplished by forming a shallow trench isolation (STI) on the substrate, forming a gate material layer on the substrate and the STI, patterning the gate material layer to form a first gate material layer and a second gate material layer, and then forming an epitaxial layer between and connecting the first gate material layer and the second gate material layer.
Abstract:
A method of forming a flash memory cell includes the following steps. A first dielectric layer and a floating gate layer are deposited on a substrate sequentially. Three blocking structures having oblique sidewalls broaden from bottom to top penetrating through the first dielectric layer and the floating gate layer are formed. A first part and a second part of the floating gate layer between two adjacent blocking structures are etched respectively, so that a first floating gate having two sharp top corners and oblique sidewalls, and a second floating gate having two sharp top corners and oblique sidewalls, are formed. The three blocking structures are removed. A first isolating layer and a first selective gate covering the first floating gate are formed and a second isolating layer and a second selective gate covering the second floating gate are formed. A flash memory cell formed by said method is also provided.
Abstract:
A device for generating a security key includes a substrate, semiconductor units, contact structures, and defects. The semiconductor units are disposed on the substrate. The contact structures are disposed on and connected with the semiconductor units. The defects are disposed in at least a part of the contact structures randomly. A manufacturing method of a device for generating a security key includes the following steps. First semiconductor units are formed on a substrate. First contact structures are formed on the first semiconductor units. The first contact structures are connected with the first semiconductor units, and defects are formed in at least a part of the first contact structures randomly.
Abstract:
Provided is a semiconductor structure including a substrate, an isolation structure, a fuse and two gate electrodes. The isolation structure is located in the substrate and defines active regions of the substrate. The fuse is disposed on the isolation structure. The gate electrodes are disposed on the active regions and connected to ends of the fuse. In an embodiment, a portion of a bottom surface of the fuse is lower than top surfaces of the active regions of the substrate.
Abstract:
A semiconductor memory device includes a substrate, having a plurality of cell regions, wherein the cell regions are parallel and extending along a first direction. A plurality of STI structures is disposed in the substrate, extending along the first direction to isolate the cell regions, wherein the STI structures have a uniform height lower than the substrate in the cell regions. A selection gate line is extending along a second direction and crossing over the cell regions and the STI structures. A control gate line is adjacent to the selection gate line in parallel extending along the second direction and also crosses over the cell regions and the STI structures. The selection gate line and the control gate line together form a two-transistor (2T) memory cell.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a plurality of isolation structures, a charge storage layer, and a conductive layer. The substrate has a memory region and a logic region. The substrate in the memory region has a plurality of semiconductor fins. The isolation structures are disposed in the substrate to isolate the semiconductor fins. The semiconductor fins are protruded beyond the isolation structures. The charge storage layer covers the semiconductor fins. The conductive layer is disposed across the semiconductor fins and the isolation structures such that the charge storage layer is disposed between the conductive layer and the semiconductor fins.