Abstract:
An object sensor includes at least one sensor device which is integrated with a fluid source. The object sensor includes a sensor housing having an object passage through which an object is moved. The object sensor further includes a fluid passage through which a flow of fluid passes. The object passage communicates with the fluid passage. A fluid source is positioned to generate a flow of fluid through the fluid passage. When an object, such as a paper sheet, moves through the object passage the object will obstruct or eclipse the flow of fluid produced by the fluid source and flowing through the fluid passage to diminish the flow of fluid. As a result, the impeded flow of fluid is sensed and one or more of a position, a presence and/or an absence of the object in the object passage is detected.
Abstract:
A pressure sensor is provided which can detect the presence, absence or magnitude of pressure. The pressure sensor includes a sensor membrane and a sensor device. The sensor membrane is flexible and may be constructed of a conductive material or may include a flexible film attached to a conductive film. The sensor device includes an electrode substrate having an electrode surface and a set of electrodes disposed on the electrode surface. As pressure is applied to the sensor membrane, the sensor membrane distends or deforms towards the electrode set positioned on the electrode surface. As sufficient pressure is applied, the sensor membrane will make both electrical and mechanical contact with at least two of the electrodes. Since the sensor membrane is conductive, the contacted electrodes will be in electrical connection with each other. As pressure is increased, additional electrodes will be contacted and placed in electrical contact with each other. As a result, the presence, absence or magnitude of pressure exerted on the sensor membrane may be determined. The pressure sensor may be utilized in a variety of environments to sense either fluid pressure or physical contact pressure.
Abstract:
This invention provides a thin film device with minimized spatial variation of local mean height. More specifically, the thin film device has a substrate and at least one first structure having a first spatially varying weighted local mean height determined by a layer weighting function. The first structure has a first maximum height, a first minimum height and a first variation for a given averaging area. A compensation structure is also provided upon the substrate, the compensation structure having a second spatially varying weighted local mean height determined by the layer weighting function. The compensation structure also has a second maximum height, a second minimum height and a second variation for the given averaging area. The first structure and compensation structure combine to provide a combined structure upon the substrate with minimized spatial variation of a combined weighted local mean.
Abstract:
A display system includes a plurality of individual display devices to collectively generate an image on a display surface. At least one camera captures at least one image of the image on the display surface and captures at least one image of an object positioned near the display surface. A controller automatically adjusts a color of an object appearing in the image on the display surface based on the at least one image of an object.
Abstract:
An integrated line selection apparatus within active matrix arrays is described. The circuit includes multiple gate line drive transistor devices, each gate line drive transistor device having a drain coupled to a gate line of multiple gate lines in a gate line driver circuit coupled to an active matrix array and a source to receive an input signal. The circuit further includes at least one address line transistor device corresponding to each gate line transistor device, each address line transistor device having a drain coupled to a gate of the corresponding gate line drive transistor device and a gate coupled to a corresponding address line, such that by asserting a predetermined combination of voltages on the plurality of address lines, a single gate line of said plurality of gate lines is selected to receive the input signal to be transmitted to a corresponding pixel within the corresponding active matrix array.
Abstract:
Embodiments of the present invention include hierarchically-dimensioned, microfiber-based dry adhesive materials featuring dense arrays of microfibers with free tips terminating in numerous microfibrils. In certain embodiments, more than two levels of microfiber-dimension hierarchy may be employed, each dimension involving smaller microfibrils emanating from the tips of the microfibers or microfibrils of the next highest dimensional level. Various additional embodiments of the present invention are directed to methods for preparing hierarchically-dimensioned, microfiber-based dry adhesive materials. These methods include single-pass or multi-pass imprint-lithography, pattern masking and etching, and imprinting fiber-embedded substrates followed by etching.
Abstract:
The present invention includes a method and system for correcting web deformation during a roll-to-roll process. The present invention includes controllable mechanical components that are capable of dynamically adjusting the planarity of the web during the roll-to-roll process. By adjusting the web during the roll-to-roll process, the accuracy of the layer-to layer alignment of successive patterning steps is greatly increased thereby enabling the production of electronic structures with lower overlap capacitance and higher resolution. A first aspect of the present invention is a method for correcting web deformation during a roll-to-roll process. The method includes initiating a roll-to-roll process involving a flexible web substrate, detecting deformation in the flexible web substrate during the roll-to-roll process and dynamically aligning the flexible web substrate based on the detected deformation.
Abstract:
Provided is a low cost system and method for forming electronic devices, especially large surface area devices. The process of imprint lithography is combined with alternate manufacturing techniques to fabricate the devices. Initially, a template imprints a three-dimensional pattern into a resist layer deposited on a flexible substrate. The resist layer is cured using ultraviolet light or other curing techniques. After curing, the 3-D pattern is modified using one of several techniques to include inkjetting, electrodeposition or laser patterning. In one embodiment, a semi-fluid material may be jetted into channels formed in the pattern, thereby forming conductive or insulating lead lines. Alternatively, a two-dimensional pattern may be jetted onto the resist layer. Final processing may include multiple etch-mask-etch steps. The integration of techniques into a single system provides a low cost, efficient method for manufacturing high quality, large surface area electronic devices.
Abstract:
A two-terminal electronic isolation device has an anode, a cathode, an integral tunnel junction, and a current-injection layer. The current-injection layer comprises a silicon-rich oxide.
Abstract:
Embodiments of organic-polymer-based memory elements that are stable to repeated READ access operations are disclosed. Organic-polymer-based memory elements can suffer cumulative degradation that occurs over repeated READ access operations due to the introduction of electrons into the organic-polymer layer. In general, entry of electrons into the organic-polymer layer generally lags initiation of a hole current within the organic-polymer layer following application of a voltage potential across the memory elements. Therefore, stable memory elements can be fabricated by introducing electron-blocking layers and/or limiting the duration of applied voltages during READ access operations.