Abstract:
A hybrid vehicle is provided with an engine (2), a first motor (1) for starting the engine (2), a generator (1) for driving the engine (2), drive wheels (8) connected to the engine (2) via a clutch (3), and a second motor (4) for driving the drive wheels (8). A battery (15) connected to the first motor (1), second motor (4) and generator (1) is further provided. A control device which controls the engine startup by the first motor (1) comprises a sensor (27) which detects a rotation speed of the engine (2), a sensor (26) which detects the charge amount of the battery (15), a power controller (11) which varies the current supplied to the first motor (1) from the battery (15) according to a signal, and a microprocessor (16) which outputs the signal. The microprocessor (16) calculates a target output torque of the first motor (1) according to the charge amount of the battery (15). When the rotation speed of the engine (2) is less than a predetermined target rotation speed, the signal is set so that the output torque of the first motor (1) coincides with a predetermined output torque, and after the rotation speed of the engine (2) reaches the predetermined target rotation speed, the signal is set so that the rotation speed of the engine (2) is maintained at the predetermined target rotation speed.
Abstract:
The present invention is proposed to avoid the generation of shocks when the output of an engine is switched with that of an electric motor connected by a clutch. The invention comprises a first electric motor connected mechanically to an engine and a second electrical motor connected mechanically through a clutch to an engine. The drive force is transmitted to the drive wheel through a transmission from the second electric motor. It is decided whether or not to connect the clutch on the basis of driving conditions. When it is decided to connect the clutch, the engine is controlled so that the output of the engine meets the required force. The first electric motor functions as an electric generator so that the rotation speed of the engine reaches a target rotation speed. When the engine is rotating at a target rotation speed, the clutch is connected. In this way, shocks are avoided when the clutch is connected and improved driving performance is realized.
Abstract:
A coil component having a core, first and second terminal electrodes provided on the core, and a conducting wire having a winding portion provided on the core and end portions electrically connected to the first and second terminal electrodes to provide first and second connecting portions. The core has one side surface at which the first and second connecting portions are provided. When viewing the one side surface, a wire portion in the winding portion extends in a first direction, and a wire portion extending from the second connecting portion extends toward the winding portion in a second direction. The first and second directions define an intersection angle of not more than 90 degrees.
Abstract:
An apparatus and method for supplying a polyphase (AC) alternating current motor with driving voltages. A conversion unit is coupled to phases of the polyphase AC motor and includes a plurality of switching devices and includes, in at least one phase, a first switching device between a bus of an AC power supply and an output terminal, a second switching device between a bus of a direct current (DC) power supply and the output terminal, and a third switching device between a common bus for the AC power supply and the DC power supply and the output terminal. Driving voltages for the polyphase AC motor are generated by selecting a voltage from among voltages having potential values corresponding to the AC power supply and the DC power supply, and the selected voltage is used to operate a switch of the plurality of switching devices.
Abstract:
A motor drive system includes a multi-output dc power source providing three or more output potentials, and a switching circuit including switching devices connected, respectively, with the output potentials of the multi-output power source. A controller determines a command apply voltage representing a desired voltage to be applied to the motor, and further determines a plurality of command share voltages corresponding to supply voltages of the multi-output dc power source, from the command apply voltage. The controller produces a pulsed voltage by driving the switching devices in accordance with the command share voltages.
Abstract:
An integrated drive motor unit which is integrally constituted of a motor, an inverter and a reducer differential unit arranged in a row, and a frame member. The reducer differential unit is connected to an output shaft of the motor, and distributes torque of the motor to a pair of axles, one of which passes through the inverter. The frame member constitutes a part of the motor and a part of the reducer differential unit, and has a portion surrounding the axle passing through the inverter. The inverter is disposed outside the frame member.
Abstract:
An inverter supply voltage generator comprises an inverter supply voltage computing unit 10, a voltage converter 11 and a battery 12. The inverter supply voltage generator varies inverter supply voltage Vdc in synchronization with motor-application voltages Vu_pwm, Vv_pwm, and Vw_pwm. Thus, the degree of freedom of the switching operation of a PWM inverter 13 is increased, an inverter loss and the size of the PWM inverter 13 can be reduced, and its efficiency can be enhanced without deteriorating the driving efficiency of an IPM motor 14.
Abstract:
This invention relates to a valve timing control device for a vehicle engine (2) which performs combustion stop in a predetermined vehicle running condition. The predetermined vehicle running condition comprises, for example, engine startup, and combustion stop is performed by stopping fuel supply to the engine (2) or stopping ignition of the supplied fuel. The device comprises an actuator (51A, 52, 55, 61) which varies the timing of an intake valve of the engine (2) according to an input signal, and a microprocessor (16, 31) which outputs the signal to the actuator (51A, 52, 55, 61). The microprocessor (16, 31) is programmed to determine whether or not combustion has stopped (S80), and when combustion has stopped, control the signal so that the open/close timing of the intake valve is retarded compared to the case when combustion has not stopped (S94).
Abstract:
A target drive torque is calculated based on a detected value for vehicle speed and a detected value for an accelerator pedal depression amount. A generator torque is calculated for a motor(1,4) based on a battery SOC. An engine(2) is controlled to a torque value which achieves a target drive torque and a generator torque as a target engine torque. The motor(1,4) is controlled to a value which is the difference of a target drive torque and an engine torque estimation value as a target motor torque. In this way, a required generator amount may be achieved under steady-state conditions and it is possible to satisfy charge conditions of the battery(15). In addition, required drive force by the driver can be achieved during transition running and responsive acceleration and deceleration can be performed.
Abstract:
A hybrid drive system for a vehicle comprises a first electric motor in driving relationship to at least one driven wheel, a heat engine, a second electric motor in driving connection to the engine, and a clutch to engage and disengage the engine to and from the driven wheel. Immediately after or upon a command to engage the clutch, a controller retrieves, based on a measure of speed of the driven wheel, data of maximum input torque, which the second motor is capable of absorbing from the engine and data of maximum output torque, which the first motor is capable of producing. The controller compares the torque request command with the retrieved data and selects one of a plurality of different protocols for operation of the first and second electric motors and the heat engine.