Abstract:
The lens is made by injection molding in a mold through the injection of molten plastic material in at least three injection shots using a multistep process. It includes a first outer lens part, a second outer lens part and a lens core part forming an interior of the lens. The lens core part is embedded between the first and second outer lens parts. The lens core part is divided into at least two subparts separated at least partially by at least one elongated slot extending across the lens core part between the first and second surfaces of the lens core part. The slot or slots made through the lens core part are filled and fused with the plastic material of the first outer lens part.
Abstract:
The high sag thick lens is for use in an illumination apparatus, such as a solid state light source. The lens is made of a first lens part having an optical active surface and a series of elongated baffles, the baffles having a top portion, the top portions defining a line that follows the curvature of the optical active surface to create a second lens part of uniform thickness. A second lens part is fused to the first lens part to create the lens. The second lens part has an optical active surface and a series of elongated baffles, the baffles having a thickness comparable to the thickness of the corresponding optical active surfaces. The first and the second baffles are intertwined along the entire length of their lateral surfaces.
Abstract:
The lens array assembly includes a lens array support made of a first molded plastic material exhibiting a volumetric shrinkage upon cooling, the lens array support having a plurality of spaced-apart apertures; and an array of lenses made of second molded plastic material exhibiting a volumetric shrinkage upon cooling, each lens corresponding to one of the apertures of the lens array support and having an actual position in the lens array support that is within a maximum tolerance of 0.20 mm compared to each lens design position.
Abstract:
The high sag thick lens is for use in an illumination apparatus, such as a solid state light source. The lens is made of a first lens part having an optical active surface and a series of elongated baffles, the baffles having a top portion, the top portions defining a line that follows the curvature of the optical active surface to create a second lens part of uniform thickness. A second lens part is fused to the first lens part to create the lens. The second lens part has an optical active surface and a series of elongated baffles, the baffles having a thickness comparable to the thickness of the corresponding optical active surfaces. The first and the second baffles are intertwined along the entire length of their lateral surfaces.
Abstract:
An optical system having a solid state light source, such as an LED of any spectrum, includes a lens that provides an output illumination pattern of uniform distribution over a remote and larger target. The lens does not have an axis of revolution. The lens has a generally non-circular outer shape in cross section and on top views, where the outer optical surfaces are angled one relative to another. The lens includes refractive and reflective active optical surfaces to split, direct and shape the incoming beam from the light source towards the target in the form of several angled beams of prescribed energies calculated as a function of the shape of the target and distance to the target. The lens has an inner primary and partially open optical cavity of a polygonal cross section facing the light source. This optical cavity has a number of refractive optical surfaces whose shape and number is determined by the number of and shape of the illumination beams generated in conjunction with the other surfaces of the lens. This novel optical system may include an array of white LEDs that generate the input illumination to an array of these lenses to insure the proper illumination level and uniformity at particular remote targets.
Abstract:
A moulding process to manufacture a moulded piece having multiple individual optical elements with the same or different dimensions. This is achieved by using a multicolour injection process as well as a multidrop injection manifold. In the first step, the optical elements are moulded without any junction between them. In the second step, a layer of plastic is moulded in order to join together all the optical elements to create a single piece. The moulded piece thus consists of two plastic injections with optical elements which is more easily adaptable to a variety of different designs for lights having two or more colours. New styles of optical elements, along with varied and original geometric arrangements can thus be imagined. Furthermore, signalling functions having by their regulations different colours can heretofore be placed within a same zone of glass.
Abstract:
Reflex pins for use in the manufacture of reflector assemblies or surfaces have three faces, the relative position of each face with respect to adjacent faces is 120 .degree.. According to the disclosure, selected cube faces of pins are cut to an angle that is adjusted from the convention angle of 120.degree. whereby light reflected from a product of such reflex pins is redirected or redistributed from one area of the zone of reflectivity to substantially increase the intensity of light to the location of a viewer or a recording device's light sensitive element at another area of the zone of reflectivity. A method of making such pins is also disclosed.
Abstract:
Method and apparatus is disclosed for manufacturing a reflex mold wherein a flexible or bendable, thin plate is provided for use in the manufacturing process. A reflex prism assembly is clamped together and metal is applied over the surface of the prisms to make a flat, thin layer of bendable material. A model of curvature is then provided and the thin layer is clamped on the model to assume the desired configuration. More metal is then applied over the back surface of the thin layer until sufficient thickness is obtained to make the reflex mold suitable to receive deposition of lens material for the production of a reflex lens.