Abstract:
The car power source apparatus is provided with a driving battery which drives an electric motor, heaters which heat the driving battery, a control circuit which controls power to the heaters, a temperature sensor which detects battery temperature and issues a detected temperature signal to the control circuit, and a surrounding temperature sensor which detects surrounding temperature and also issues a detected temperature signal to the control circuit. When the car is not being driven and the driving battery is heated via the heaters powered by the driving battery, the set temperature is changed corresponding to the detected surrounding temperature in the control circuit.
Abstract:
A control apparatus for an AC electric motor vehicle including a converter that converts an AC voltage input from an AC overhead wire via a transformer into a DC voltage, an inverter that converts the DC voltage into an AC voltage, and a motor that is driven and controlled by the inverter includes: torque-command calculating units that calculate a torque command value of the motor and output the torque command value to the inverter; and a static inverter that supplies electric power to a load mounted on the AC electric motor vehicle.
Abstract:
Electrical power from a dynamic braking process in a vehicle is used to power one or more auxiliary systems in the vehicle. The auxiliary systems may be a urea storage container heating unit, a particulate filter regeneration heating unit, a cabin heating system, and/or a battery heating unit. When dynamic braking electricity is unavailable, and to the extent the dynamic braking electricity is insufficient for powering the auxiliary system, electrical power from an energy device on board the vehicle is used to power the auxiliary system. The energy device may be an auxiliary energy storage device, devoted for use in powering the auxiliary system.
Abstract:
A vehicle in which propulsion can be distributed between first and second axles includes: a first electric motor coupled to the first axle and a second electric motor coupled to the second axle. An electric control unit (ECU) coupled to the motors causes electrical energy to be generated by the first motor in response to the ECU determining that a wheel speed of at least one wheel associated with the first axle exceeds the vehicle speed and causing electrical energy to be supplied to the second motor in response to electrical energy being generated in the first motor.
Abstract:
A vehicle in which propulsion can be distributed between first and second axles includes: a first electric motor coupled to the first axle and a second electric motor coupled to the second axle. An electric control unit (ECU) coupled to the motors causes electrical energy to be generated by the first motor in response to the ECU determining that a wheel speed of at least one wheel associated with the first axle exceeds the vehicle speed and causing electrical energy to be supplied to the second motor in response to electrical energy being generated in the first motor.
Abstract:
A vehicle auxiliary electric-power-supplying system can normally stop an electric power inverter by the frequency in use for an electric power supplier being suppressed as low as possible, and electric power being immediately started to be supplied from the power supplier to a controller in a case in which normal electric power has become unable to be obtained from power-outputting of the electric power inverter. The system includes: the electric power inverter for converting a first type of dc power received through an overhead wire to a second type of dc power, and supplying the second type of dc power to a dc load; the power supplier for converting the first type of dc power received through the overhead wire to a third type of dc power; a power-outputting unit, connected to both the electric power inverter and the electric power supplier, for outputting either the second type of dc power or the third type of dc power; and the controller for receiving power from the power-outputting unit, and controlling the electric power inverter.
Abstract:
A car power source apparatus is provided with a driving battery which drives an electric motor, heaters which heat the driving battery, a control circuit which controls power to the heaters, a temperature sensor which detects battery temperature and issues a detected temperature signal to the control circuit, and a surrounding temperature sensor which detects surrounding temperature and also issues a detected temperature signal to the control circuit. When the car is not being driven and the driving battery is heated via the heaters powered by the driving battery, the set temperature is changed corresponding to the detected surrounding temperature in the control circuit.
Abstract:
A vehicle auxiliary electric-power-supplying system can normally stop an electric power inverter by the frequency in use for an electric power supplier being suppressed as low as possible, and electric power being immediately started to be supplied from the power supplier to a controller in a case in which normal electric power has become unable to be obtained from power-outputting of the electric power inverter. The system includes: the electric power inverter for converting a first type of dc power received through an overhead wire to a second type of dc power, and supplying the second type of dc power to a dc load; the power supplier for converting the first type of dc power received through the overhead wire to a third type of dc power; a power-outputting unit, connected to both the electric power inverter and the electric power supplier, for outputting either the second type of dc power or the third type of dc power; and the controller for receiving power from the power-outputting unit, and controlling the electric power inverter.
Abstract:
A hydrocarbon fueled hydrogen generator and hydrogen fueled electric power generating system and apparatus comprising hydrocarbon fuel and oxidizer delivery and mixing apparatus, ignition and combustion apparatus igniting the mixture of fuel and oxidizer, apparatus receiving and conducting the gases of combustion through a sulfur absorbing unit and removing sulfur from the gases, a steam reformer unit reforming carbon monoxide gas into hydrogen gas and carbon dioxide gas, a carbon monoxide scavenger unit reforming residual carbon monoxide gas to hydrogen gas and carbon dioxide gas; apparatus receiving the hydrogen gas and carbon dioxide gas and operating to liquefy and separate the carbon dioxide gas from the hydrogen gas; and, structure to hold and deliver the liquid carbon dioxide to useful end; and structure to hold and deliver hydrogen gas to the anode of a hydrogen fueled electric power generating fuel cell.