Abstract:
A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
A combined submersible vessel and unmanned aerial vehicle preferably includes a body structure, at least one wing structure, at least one vertical stabilizer structure, and at least one horizontal stabilizer structure. A propulsion system is coupled to the body structure and is configured to propel the flying submarine in both airborne flight and underwater operation. Preferably, the propulsion system includes a motor, a gearbox coupled to the motor and configured to receive power generated by the motor and provide variable output power, a drive shaft coupled to the gearbox and configured to transfer the variable output power provided by the gearbox, and a propeller coupled to the drive shaft and configured to accept power transferred to it from the drive shaft. The propeller is further configured to rotate and propel the flying submarine in both an airborne environment and in an underwater environment.
Abstract:
A device to launch a drone, comprises a rail extending along a longitudinal axis and a carriage, mobile on the rail, that can support and launch a drone by the acceleration of the carriage between a loading position and an end-of-travel position, further comprising a spring mechanism configured to exert a return force on the carriage along the longitudinal axis that is substantially constant between the two positions. The spring mechanism comprises at least one coil spring around a hub, one end of the coil spring being linked to the carriage, the return force exerted on the carriage being generated by the coiling of the spring around the hub.
Abstract:
A combined submersible vessel and unmanned aerial vehicle preferably includes a body structure, at least one wing structure, at least one vertical stabilizer structure, and at least one horizontal stabilizer structure. A propulsion system is coupled to the body structure and is configured to propel the flying submarine in both airborne flight and underwater operation. Preferably, the propulsion system includes a motor, a gearbox coupled to the motor and configured to receive power generated by the motor and provide variable output power, a drive shaft coupled to the gearbox and configured to transfer the variable output power provided by the gearbox, and a propeller coupled to the drive shaft and configured to accept power transferred to it from the drive shaft. The propeller is further configured to rotate and propel the flying submarine in both an airborne environment and in an underwater environment.
Abstract:
An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV (400) having an exterior surface, an aerial vehicle (AV) tab (510) extending from the exterior surface, a tube (440) containing the UAV (400), the tube (440) including a tab stop (515) configured to controllably hinder travel of the AV tab (510) past the tab stop (515), and a pair of opposing tab guides (700, 705) configured to position the AV tab (510) for travel over the tab stop (515).
Abstract:
Various embodiments of the present disclosure provide an apparatus and method for launch and retrieval of a hovering aircraft. Generally, the apparatus of the present disclosure is configured to capture a hovering aircraft between two or more fingers of an aircraft capturer, guide the captured aircraft into a docking station for servicing and/or storage, and launch the aircraft from the docking station. The apparatus of the present disclosure is thus configured to bring the aircraft from an imprecise, irregular hover into a secure and well-controlled rest state. The tolerance of imprecision provided by the apparatus makes it particularly suited for use under a practical conditions such as aboard a small boat in a rough sea.
Abstract:
The invention relates to a launched aerial surveillance vehicle, more specifically to a grenade or under-slung grenade launcher (UGL) aerial surveillance vehicle, a surveillance system and methods of providing rapid aerial surveillance.The vehicle once deployed is capable of autonomous flight paths, with basic inputs to change the circular flight paths, so as to build up surveillance for an area of interest. The vehicle comprises at least on optical sensor, which may be IR or visible range, to survey the area of interest, and feed the images back to at least one remote user.
Abstract:
A launch canister for ejection from a submerged launch platform, the launch canister being adapted for ejection in a direction substantially along a first axis of the launch canister and comprising: an enclosure for carrying a UAV; a nose cap releasably located in a launch opening at a forward end of the launch canister; a launch mechanism for driving a UAV carried in the enclosure out of the launch canister through the launch opening in a direction substantially along said first axis; and a water surface sensor for detecting when the nose cap of the canister broaches the surface of the water; wherein the launch canister is configured to, on the water surface sensor detecting that the nose cap of the canister has broached the surface of the water, immediately release the nose cap and initiate the launch mechanism to drive a UAV carried in the enclosure out of the launch canister through the launch opening.
Abstract:
The technologies described herein are generally directed to utilizing unmanned controller equipment to launch and recover unmanned imaging equipment in a fifth generation (5G) network or other next generation networks. For example, a method described herein can include receiving an indication that unmanned aerial equipment is to be captured. The method can further include, based on the indication, capturing the unmanned aerial equipment launched over a data collection area, resulting in captured unmanned aerial equipment. Further, the method can include, interfacing with the captured unmanned aerial equipment to download information associated with the data collection area collected by the unmanned aerial equipment during airborne transit over the data collection area.