Abstract:
Rubber-cord complex 9 having improved wet heat adhesive property between rubber and cord. The rubber-cord complex includes cord 10 comprising drawn plated wire 17 prepared by providing brass plated layer 16E on surface of element wire 15 and drawing the resulting plated wire and rubber 12 vulcanized and bonded to cord 10. The rubber-cord complex 9 has adhesion reaction layer 25 (formed by cross-linking sulfur and copper) between rubber 12 and brass plated layer 16E. Adhesion reaction layer 25 has average thickness of 50-1,000 nm. Interface S between adhesion reaction layer 25 and the rubber has a fractal dimension of 1.001-1.300 in a wet heat deterioration state after being subjected to vulcanization to bond rubber 12 thereto and being held at a temperature of 50-100° C. and a humidity of 60-100% for one hour to 20 days.
Abstract:
A rubber-cord complex having an improved wet heat adhesive property between a rubber and a cord comprising a drawn plated wire, and including a metal cord comprising a drawn plated wire prepared by providing a brass plated layer on the surface of an element wire and drawing the resulting plated wire, and a rubber vulcanized and bonded to the cord, wherein in a wet heat deterioration state of the drawn plated wire after being subjected to the vulcanization to bond the rubber thereto and further held under an atmosphere having a temperature of 50 to 100° C. and a humidity of 60 to 100% for one hour to 20 days, the average grain size of crystal grains present in the brass plated layer is not more than 50 nm, and the grain boundary of the crystal grains has a fractal dimension of 1.001 to 1.500.
Abstract:
A double rustproof PC strand has superior durability and semi-permanent rustproof performance. A core wire and surrounding wires are formed of wires subjected to a wire drawing treatment and a plating treatment to be formed with a plated layer. A rustproof treatment is applied by forming a synthetic resin coat on an outer peripheral surface thereof. In order to uniformize and regulate the twisting pitch, the core wire and the surrounding wires are adjusted under the conditions of: (A) Diameter of CORE: 4.42±0.05 mm, Diameter of Surrounding wire: 4.25±0.05 mm, (B) Diameter of CORE: 5.22±0.05 mm, Diameter of Surrounding wire: 5.06±0.05 mm, or (C) Diameter of CORE: 5.40±0.05 mm, Diameter of Surrounding wire: 5.25±0.05 mm, and then twisted, and the tensile strength is 1850 N/mm2 or higher.
Abstract:
A steel cord used for reinforcing rubber product with an oval cross-section has a structure of m+n, while m is the number of core wires (26) and n is the number of the outer layer wires (22). The core wire (26) is untwisted while m is 1 or the core wires (26) are untwisted and aligned in parallel while m is between 2 and 4, and the outer layer wires (22) are twisted around said core wires (26). The core wires (26) are oval wires and the outer layer wires (22) are round wires. The wires (22, 26) in the steel cord have a carbon content not less than 0.60%.
Abstract:
A tire including at least one structural element and at least one metal cord includes a plurality of elementary metal wires stranded together, each elementary metal wire being coated with at least one first metal coating layer, the metal cord being coated with at least one second metal coating layer, wherein the at least one second metal coating layer has a nominal thickness higher than or equal to 30 nm, preferably from 50 nm to 120 nm, more preferably from 70 nm to 100 nm.
Abstract:
This invention relates to a pneumatic tire wherein at least one of a carcass (4) and a belt (6) comprises a layer of steel cords covered with a coating rubber, and as the coating rubber covering the steel cords in at least one of the carcass (4) and the belt (6) is used a rubber composition comprising a rubber component (A), 1-10 parts by mass of sulfur (B) and 0.1-10 parts by mass of a compound (C) including a substituted benzene ring, a compound (D1) having a particular structure or a composition (D2) consisting essentially of such a compound based on 100 parts by mass of the rubber component, and as the steel cord is used a steel cord formed by twisting a plurality of steel wires each plated on its peripheral face with a brass and having an amount of phosphorus as an oxide in a surface layer region from a surface of the plated brass to a depth of 5 nm inward in a radial direction of the wire controlled to not more than 1.5 atomic %.
Abstract:
Corrosion resistant and/or lightweight bimetallic cylinders used in tools and electric cables, including core surrounded by corrosion resistant alloy outer cladding materials, where the alloy clad may include such alloys as beryllium-copper based alloys, nickel-chromium based alloys, superaustenitic stainless steel alloys, nickel-cobalt based alloys, nickel-molybdenum-chromium based alloys, and the like. The core may be a low density core based substantially upon titanium or titanium alloys.
Abstract:
A metallic body of carbon steel covered with an adhesive layer capable of adhering to a rubber matrix based on diene elastomer. The carbon content of the steel is between 0.35 and 1.2% by weight. The adhesive layer is formed of a metallic layer bearing aluminum oxides or hydroxides, which itself is covered with an organosilane film which is at least bifunctional, capable of ensuring, as coupling agent, the bond between the aluminum oxides or hydroxides on one hand, and the rubber matrix on the other hand.
Abstract:
Disclosed herein are a tire-reinforcing steel cord and a pneumatic radial tire using the same. The tire-reinforcing steel cord includes an inner layer consisting of 3 filaments and an outer layer consisting of 7 or 8 filaments and surrounding the inner layer. The inner layer and the outer layer are twisted in such a manner that they have the same twist direction and the same twist pitch length, whereby the number of the twisting steps in the manufacture of the steel cord is reduced, and also the penetration of rubber into the steel cord is improved such that the steel cord has an improved durability upon application to tires.
Abstract:
A coated metal reinforcement element for polymeric or elastomeric materials comprises a coating of: a polymer or prepolymer compatible with and co-polymerizable, co-vulcanizable or crosslinkable with said polymeric or elastomeric material to be reinforced, and bearing functional groups; either covalently bonding to the metal surface of said reinforcement element; or forming covalent bonds with the outward directed first functional groups of a mono-or multimolecular layer of a bifunctional adhesion promotor intercalated between said metal by its second functional groups. A method for the coating includes a one step and a two step procedure.