Abstract:
A photometrical apparatus has a first light receiving element, and a second light receiving element less sensitive to temperature and other environmental influences than said first light receiving element whereby a value Pm of measured quantity of light from the subject is calculated from the following formula ##EQU1## Pr designates a quantity of light from a standard light source, Dr and Dm designate outputs of the first light receiving element generated by the light from the standard light source and the subject, Dpo and Dpt designate outputs of the first light receiving element generated by the light from the reference light source and the subject, and Dso and Dst designate outputs of the second light receiving element generated by the light from the reference light source and the subject.
Abstract:
A proximity sensing device includes: a light source, a sensing unit, a light guide unit, and a window. The light source emits light, which is guided by the light guide unit to the window. The emitted light reflected by an object is received by the same window. The light guide unit includes a partial-transmissive-partial-reflective (PTPR) optical element, whereby the light emitted from the light source is reflected by the PTPR optical element, while the light reflected by the object passes through the PTPR optical element. There is only one window required.
Abstract:
Removable and/or detachable viewing devices for optical and/or other measuring equipment and methods of making and using the same are disclosed. The viewing device includes a housing, an eyepiece, and an attachment mechanism configured to releasably or detachably connect the viewing device to an optical measuring instrument. An optical measuring system includes an optical measuring instrument and the viewing device detachably connectable to the optical measuring instrument. The optical measuring kit may include one or more caps or plugs detachably connectable to the opening of the optical measuring instrument and/or the interface end of the viewing device.
Abstract:
A video calibration device comprising an elongated image tube having a length, a first opening at one end of the image tube and a second opening at the opposite end of the image tube. The device includes an elongated sensor tube having a length, a first opening at one end of the sensor tube and a second opening at the opposite end of the sensor tube. The first opening of the sensor tube is adapted to support a video calibration sensor. A video calibration sensor is disposed in the first opening of the sensor tube. The sensor tube is sealingly secured to the image tube at an angle whereby the second opening of the sensor tube and the second opening of the image tube are substantially juxtaposed.
Abstract:
This invention is related to a light measuring apparatus and a method of using the device. It is used to measure various photometric quantities of the light emanating from a distant source of light.
Abstract:
An apparatus for both detecting and repairing a shunt defect in a solar cell substrate. A shunt detection module detects the shunt defect in the substrate, using at least one of lock-in thermography and current-voltage testing. A process diagnostic module determines whether the substrate should be passed without further processing by the apparatus, rejected without further processing by the apparatus, or repaired by the apparatus. A shunt repair module electrically isolates the shunt defect in the substrate. In this manner, a single apparatus can quickly check for shunts and make a determination as to whether the substrate is worth repairing. If it is worth repairing, then the apparatus can make the repairs to the substrate.
Abstract:
A sun detection sensor assembly for attachment to a thermal imaging device, comprising an elongated tubular body having two ends and a sensor, characterized as Sun TECT sensor, attached to one end, the Sun TECT sensor having a tubular body, an IR window positioned at one end of the tubular body, and a photo a infrared photo transistor positioned within the tubular body, opposite the IR window, the infrared photo transistor having a photo sensitive surface for detecting the exposure from sun when the sun is within a field of view of the Sun TECT Sensor, and an automatic ON/OFF mechanism which is activated by the infrared photo transistor and protecting the thermal imaging device from undesired and harmful infrared radiation.
Abstract:
Certain embodiments of the present invention provide a cupola and photocontrol receptacle assembly that allows a user to adjust the direction of the cupola base and the photocontrol receptacle simultaneously without using tools. A fixture housing may have an opening for receiving a photocontrol receptacle connection member and one or more ribs located in proximity to the fixture housing opening. A cupola base may include an opening for receiving the connection member and features adapted to detachably engaged the fixture housing ribs. In addition, a spring may be coupled to the connection member and configured to allow the photocontrol receptacle to move in a first direction upon the application of a force in the first direction and recoil when the force is removed or decreased.
Abstract:
An imaging device has an optoelectronic detector, a beam splitter, a field lens, a mirror, a control circuit, a memory and a power source disposed within a housing. The housing is configured to be mounted in an optical path of a scope. The optoelectronic detector is mounted outside of the optical path of the scope. The beam splitter is mounted in line with the optical path of the scope. The field lens is mounted in line with a reflected optical path of the beam splitter. The mirror is mounted such that the reflected optical path of the beam splitter from the field lens is reflected to the optoelectronic detector. The control circuit is connected to the optoelectronic detector. The memory is connected to the control circuit. A user interface is mounted on the housing and connected to the control circuit. The power source is connected to the control circuit.
Abstract:
A scanning projector and method is provided that generates a feedback signal from at least one photodetector. In the scanning projector, a scanning mirror is configured to reflect laser light into an image region and an over scanned region. The at least one photodetector is configured to receive a portion of the reflected laser light impacting the over scanned region, and provides the feedback signal responsive to the received portion of light. This feedback signal can then be used to provide precise control of the scanning mirror.