Abstract:
Examples of front-end modules, apparatuses and methods for coupling compensation in a closed-loop digital pre-distortion (DPD) system are described. The closed-loop DPD circuit may include a PA and a loopback path. The PA may receive a PA input signal and amplify the PA input signal to provide a PA output signal proportional to a product of the PA input signal and a gain of the PA. The loopback path may receive the PA output signal to output a loopback signal. A forward coupling and a backward coupling may exist between the PA input signal and an output of the loopback path. The output of the loopback path may be proportional to a product of the PA output signal and a gain of the loopback path. The loopback path may include a coupling cancellation mechanism configured to cancel couplings between the PA input signal and the loopback signal.
Abstract:
In a method of generating a pulse-shaped transmitted output signal having a definable pulse shape in a multistage amplifier arrangement, the course of the “pulse top” (upper edge) of the transmitted signal is determined by control signals at the amplifier stages. The control signals of the amplifier stages are definable such that the control signal of an amplifier stage in each case comprises a number of pulse sections of a predefinable frame pulse. The tops of the pulse sections each having a predefinable constant gradient. A predistortion is introduced into the control signals in this manner, having a course which offsets distortion of the pulse top which results when no predistortion is used.
Abstract:
Systems and methods in which an ultrasonic signal is introduced into an audio signal before the audio signal is amplified by a switching amplifier. The added ultrasonic signal (e.g., a tone at half the amplifier's switching frequency) shifts the signals input to a set of power switches so that they do not switch nearly simultaneously. The ultrasonic signal causes the output current to be well defined to eliminate dead time distortion at low signal levels. Adding the tone ultrasonic signal causes the distortion to shift to an amplitude greater than zero. Signals that exceed this amplitude will experience the distortion, but the distortion will be less noticeable than in lower-amplitude signals. Signals that do not exceed this amplitude will not experience the distortion at all. Adding an ultrasonic signal may also draw energy away from the switch frequency and its harmonics to interference with AM radio reception.
Abstract:
A signal notching system reduces signal peaks by notching the peak of a signal above a threshold to produce a notched signal. The notched signal is then filtered to produce a resulting signal with a reduced peak amplitude. For example, in an implementation where the signal is represented by signal samples, the peak notching system first locates a peak sample that is beyond a threshold, such as a sample representing a positive peak sample of a peak above the threshold. Once a peak sample is located, the peak notching system adjusts the peak sample by an amount which is a function of the amount that the peak sample is beyond the threshold, effectively creating a notched signal with a one sample notch at the peak. The peak notching system filters the notched signal to fill in the notch to produce a signal with a reduced peak.
Abstract:
Apparatus and methods provide predistortion for a phased array. Radio frequency (RF) sample signals from phased array elements are provided along return paths and are combined by a hardware RF combiner. Phase shifters are adjusted such that the RF sample signals are phase-aligned when combined. Adaptive adjustment of predistortion for the amplifiers of the phased array can be based on a signal derived from the combined RF sample signals.
Abstract:
A linearization circuit that reduces intermodulation distortion in an amplifier output receives a first signal that includes a first frequency and a second frequency and generates a difference signal having a frequency approximately equal to the difference of the first frequency and the second frequency. The linearization circuit generates an envelope signal based at least in part on a power level of the first signal and adjusts a magnitude of the difference signal based on the envelope signal. When the amplifier receives the first signal at an input terminal and the adjusted signal at a second terminal, intermodulation between the adjusted signal and the first signal cancels at least a portion of the intermodulation products that result from the intermodulation of the first frequency and the second frequency.
Abstract:
A linearization circuit reduces intermodulation distortion in a cascade amplifier that includes a first stage and a second stage. The linearization circuit receives a first signal that includes a first frequency and a second frequency and generates a difference signal having a frequency approximately equal to the difference of the first frequency and the second frequency, generates an envelope signal based at least in part on a power level of the first signal, and adjusts a magnitude of the difference signal based on the envelope signal. When the cascade amplifier receives the first signal at an input terminal, the first stage receives the adjusted signal, and the second stage does not receive the adjusted signal, intermodulation between the adjusted signal and the first signal cancels at least a portion of the intermodulation between the first frequency and the second frequency from the output of the cascade amplifier.
Abstract:
RF PA circuitry includes an amplifier stage, gain compensation circuitry, and an adder. The amplifier stage is configured to receive and amplify an RF input signal to provide an RF output signal. The gain compensation circuitry is coupled in parallel with the amplifier stage and configured to receive the RF input signal and provide a gain compensation signal, wherein the gain compensation signal is configured to linearize at least a portion of the gain response of the amplifier stage or the RF PA circuitry in general. The adder is coupled between an output of the amplifier stage and the gain compensation stage and is configured to receive and add the RF output signal and the gain compensation signal to provide a linearized RF output signal.
Abstract:
Radio frequency power amplifier circuitry includes an amplifier element, power supply modulation circuitry, and bias modulation circuitry. The amplifier element is configured to amplify an RF input signal using a modulated power supply signal and a modulated bias signal to produce an RF output signal. The power supply modulation circuitry is coupled to the amplifier element and configured to provide the modulated power supply signal. The bias modulation circuitry is coupled to the amplifier element and the power supply modulation circuitry and configured to receive the modulated power supply signal and provide the modulated bias signal. Notably, the modulated bias signal is a function of the modulated power supply signal such that the modulated bias signal is configured to maintain a small signal gain of the amplifier element and the phase of the RF input signal at a constant value as the modulated power supply signal changes.
Abstract:
A transmitter clips a transmission signal before transmission in order to reduce the strength of at least one peak of the transmission signal exceeding a predetermined threshold. The transmitter includes a clipper having a minimizer, a filter and an adder. The minimizer minimizes of a cost function with respect to an optimization signal, the cost function having weighted terms as a function of the optimization signal. The terms relate to an effective modulation distortion and an effective overshoot exceeding the predetermined threshold. The filter forms a clipping signal by filtering the optimization signal formed as a result of the minimization according to the spectrum emission mask requirements of the radio system. The adder subtracts the clipping signal from the transmission signal.