Abstract:
Methods for making and using amino-aldehyde resins. The method for making an amino-aldehyde resin can include mixing an intermediate amino-aldehyde reaction product having a total aldehyde compound to total amino compound molar ratio ranging from about 1.4:1 to about 3:1 with a first aldehyde compound and a first amino compound to produce an amino-aldehyde resin having a total aldehyde compound to total amino compound molar ratio ranging from about 0.5:1 to about 1.2:1. The concentration of the first aldehyde compound mixed with the intermediate reaction product can be about 1.9 wt % or more based on a combined solids weight of the aldehyde compounds and the amino compounds in the amino-aldehyde resin.
Abstract:
Adhesive composition consisting of an aminoplast resin with a free formaldehyde-like compound being present. In particular an adhesive composition consisting of a melamine-urea-formaldehyde resin to which a free formaldehyde-like compound has been added so that F/(NH2)2 is equal to 0.8-1.6. The adhesive is in particular suitable for the preparation of board material by combining in a press cellulose-containing materials with the adhesive according to the invention and in this press manufacturing board material at elevated temperature and pressure.
Abstract:
The present disclosure provides a modified deodorant urea-formaldehyde (UF) resin and use thereof, as well as a particleboard and a preparation method thereof, and relates to the technical field of wood-based panels. Raw materials for preparing the modified deodorant UF resin provided by the present disclosure include: melamine-modified UF resin (MUF), aluminum ammonium sulfate dodecahydrate, wax, and water. Raw materials for preparing the MUF include: urea, formaldehyde, and melamine. When the modified deodorant UF resin provided by the present disclosure is used to prepare wood-based panels, the aluminum ammonium sulfate dodecahydrate losses 12 crystal water during hot pressing to form a metastable structure NH4Al(SO4)2, in which NH4+ can react with the formaldehyde to reduce formaldehyde emission, and NH4+ and A13+ can absorb hydroxyl groups of organic substances to form hydrogen bonds to reduce odor of the wood-based panels.
Abstract:
In an epoxy resin composition, per 100 parts by mass of an epoxy resin component containing from 60 to 85 parts by mass of N,N,N′,N′-tetraglycidyldiaminodiphenylmethane resin (A) having a viscosity at 50° C. of 6000 mPa·s or less and from 15 to 40 parts by mass of a liquid bisphenol A epoxy resin (B) having a viscosity at 25° C. of 20000 mPa·s or less, from 8 to 15 parts by mass of a thermoplastic resin (C), from 2 to 10 parts by mass of elastomer microparticles (D) having an average particle diameter of 1000 nm or less, and from 0.5 to 2.5 parts by mass of silica microparticles (E) having an average particle diameter of 1000 nm or less are blended.
Abstract:
A moulding composition which forms stable, durable mouldings which are color stable, have good water resistance and can be glass clear and fire-resistant, comprises a melamine-formaldehyde resole of mole ratio melamine:formaldehyde in the range 1:1.1 to 1:5.0, and from 20 to 80% by weight, based on the resole, of a glycol or glycol derivative. The composition may also contain one or more of water, polyvinyl alcohol, aluminium hydroxide and reinforcing fillers. The melamine in the resole may be partially replaced with urea. Cure of the resin composition, after shaping, takes place at a pH of at least 6.0, and is accelerated by boron oxide and also by microwave heating. Foamed products are especially useful.
Abstract:
Disclosed is a highly flame-retardant fiber of excellent color-fastness which is made from the mixture composition of 30 to 60 parts of an amino resin composed of a condensation product of formaldehyde with melamine and other amino compounds selected from, urea, dicyandiamide and benzoguanamine, and 70 to 40 parts of polyvinyl alcohol. The incorporation of 0.1 to 4.0% by weight of phosphorus by the addition of a reactive organic phosphorous compound to the spinning dope or to the wet filaments before drawing causes noticeable enhancement of the flame-retardance. Curing and crosslinking may be carried out during the yarn-making process of spinning, drawing and heat-setting or after the yarn-making process by treatment in an acidic formaldehyde environment.
Abstract:
A one-component curable amino resin binder system is disclosed for use in the preparation of fiberboard and other products wherein the binder system comprises formaldehyde, urea, an oxime compound soluble in the binder system, and optionally a water miscible alcohol and or melamine.