Abstract:
The invention relates to a method for producing an anion-exchange polymer material having an IPN or semi-IPN structure, said method consisting in: (A) preparing a homogeneous reaction solution containing, in a suitable organic solvent, (a) at least one organic polymer bearing reactive halogen groups, (b) at least one tertiary diamine, (c) at least one monomer comprising an ethylenic unsaturation polymerizable by free radical polymerization, (d) optionally at least one cross-linking agent including at least two ethylenic unsaturations polymerizable by free radical polymerization, and e) at least one free radical polymerization initiator; and (B) heating the prepared solution to a temperature and for a duration that are sufficient to allow both a nucleophilic substitution reaction between components (a) and (b) and a free radical copolymerization reaction of components (c) and optionally (d) initiated by component (e). The invention also relates to the resulting IPN or semi-IPN material and to the use thereof in electrochemical devices, in direct contact with an air electrode.
Abstract:
An electrolyte membrane including (i) a porous mat of nanofibres, wherein the nanofibres are composed of a non-ionically conducting heterocyclic-based polymer, the heterocyclic-based polymer comprising basic functional groups and being soluble in organic solvent; and (ii) an ion-conducting polymer which is a partially- or fully-fluorinated sulphonic acid polymer. The porous mat is essentially fully impregnated with ion-conducting polymer, and the thickness of the porous mat in the electrolyte membrane is distributed across at least 80% of the thickness of the electrolyte membrane. Such a membrane is of use in a proton exchange membrane fuel cell or an electrolyser.
Abstract:
A blend or blend membrane formed from a hydroxymethylene-oligo-phosphonic acid R-C(P03H2)x(OH)y and a polymer, in which the radical R is any organic radical, x and y are integers, the hydroxymethylene-oligo-phosphonic acid is a product of a reaction involving a carbonic acid, a carbonic acid halide or a carbonic acid anhydride, and the polymer includes a functional group selected from the group consisting of (i) suitable cation exchange groups or their non-ionic precursor and (ii) suitable basic groups.
Abstract:
The present specification provides a polymer electrolyte membrane, a membrane electrode assembly including the polymer electrolyte membrane, and a fuel cell including the membrane electrode assembly.
Abstract:
An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-Rs. Rs is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-Rs. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.
Abstract:
Disclosed is an electrolyte membrane for a membrane-electrode assembly including a block copolymer composed of a hydrophilic domain and a hydrophobic domain.
Abstract:
The present invention relates to a proton exchange membrane, to the process for preparing said membrane, and to the application of said membrane in fields requiring ion exchange, such as effluent purification and electrochemistry or in energy fields. In particular, this membrane is used in the design of fuel cell membranes.
Abstract:
Method and system for electrochemically compressing hydrogen. In one embodiment, the system includes a membrane electrode assembly (MEA) that includes a polymer electrolyte membrane (PEM), an anode, and a cathode. First and second gas diffusion media are positioned adjacent the cathode and anode, respectively. A humidifying membrane is positioned next to the second gas diffusion medium on a side opposite the anode. A water supply is connected to the humidifying membrane, and a hydrogen gas supply is connected to the second gas diffusion medium. A hydrogen gas collector including a back pressure regulator is connected to the first gas diffusion medium. Separators, positioned on opposite sides of the MEA, are connected to a power source. In use, hydrogen is electrochemically pumped across the MEA and collected in the hydrogen gas collector. The PEM is kept properly humidified by the humidifying membrane, which releases water into the second gas diffusion medium.
Abstract:
A layered film is prepared by layering a substrate layer, a first layer containing an acid-modified olefin-based resin, a second layer containing a cyclic olefin-based resin, and an ion-exchange resin-containing layer containing an ion-exchange resin in this order. Each of the second layer and the first layer may be a layer formed by coating. The average thickness of the second layer may be 30 μm or less. A membrane electrode assembly of a solid polymer-type fuel battery may be produced by releasing a layer other than the ion-exchange resin-containing layer from the layered film. The layered film does not contain a component having a large environmental load even when the release layer is formed of the cyclic olefin-based resin, firmly attaches to a substrate, and can be released smoothly from the ion-exchange resin-containing layer serving as a transfer medium.
Abstract:
Embodiments are directed to composite membranes having a microporous polymer structure, and an ion exchange material forming a continuous ionomer phase within the composite membrane. The continuous ionomer phase refers to absence of any internal interfaces in a layer of ionomer or between any number of layers coatings of the ion exchange material provided on top of one another. The composite membrane exhibits a haze change of 0% or less after being subjected to a blister test procedure. No bubbles or blisters are formed on the composite membrane after the blister test procedure. A haze value of the composite membrane is between 5% and 95%, between 10% and 90% or between 20% and 85%. The composite membrane may have a thickness of more than 17 microns at 0% relative humidity.