Abstract:
The present disclosure relates to an electromagnetic energy detector. The detector can include a substrate having a first refractive index; a metal layer; an absorber layer having a second refractive index and disposed between the substrate and the metal layer; a coupling structure to convert incident radiation to a surface plasma wave; additional conducting layers to provide for electrical contact to the electromagnetic energy detector, each conducting layer characterized by a conductivity and a refractive index; and a surface plasma wave (“SPW”) mode-confining layer having a third refractive index that is higher than the second refractive index disposed between the substrate and the metal layer.
Abstract:
In some aspects of the present application, an apparatus for producing an interference pattern on a photosensitive portion formed on a surface of a sample is disclosed. The apparatus can include an optical system for providing interference between two coherent spherical wavefronts impinging on a thin-film photosensitive material formed on a surface of a sample, wherein a plane of the surface normal of the sample is arranged at an angle with respect to a plane defined by center propagation vectors of the two coherent spherical wavefronts; and one or more actuating elements operable to actuate one or more optical elements in the optical system, the sample, or both the one or more optical elements and the sample in one or more degrees of freedom to control a relative magnitude of a longitudinal and a transverse chirp of the interference pattern.
Abstract:
A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
Provided is a method for forming a two-dimensional array of semiconductor quantum confined structures. The method includes providing a layer that has first atoms and second atoms, the first atoms having a different size than the second atoms; providing an indenter template that includes at least one indenter structure extending from a surface of the indenter template; contacting the layer and the at least one indenter structure together with a pressure sufficient to generate an elastic deformation in the layer but without generating plastic deformation of the layer; annealing the layer; and forming at least one quantum confined structure in a region of the layer in a region of the layer not pressed by the at least one indenter structure.
Abstract:
An attenuated enterohemorrhagic E. coli-based vaccine vector is disclosed. Enterotoxigenic E. coli colonization factor antigen 1 and the B subunit of E. coli heat labile toxin have been expressed in the attenuated enterohemorrhagic E. coli vector strain. Immunized animals are further protected against lethal and non lethal challenges with the enterotoxigenic E. coli strain. Immunization of mice with the vaccine construct induces mucosal antibody against both antigens, establishing the attenuated E. coli vector strain as a generally useful vector for presenting one or more antigens to a subject in a vaccine.
Abstract:
A photonically controlled microwave device having a photosensitive substrate having an interior region comprising a high radio frequency (“RF”) field for a resonant RF mode. An RF resonator is patterned on a surface of the substrate, the pattern includes an aperture in the resonator positioned to direct light received from a light source to the interior region. The light source may have a wavelength that enables illumination of the interior region to generate free carriers or other photo-induced changes in RF permittivity. An optical boundary may be provided that recirculates the unabsorbed optical power inside the high RF field region until it is fully absorbed.
Abstract:
An embodiment of the present disclosure is directed to a semiconductor device. The semiconductor devise comprises a substrate. An epitaxially grown semiconductor material is disposed over at least a portion of the substrate. A nanotemplate structure is disposed at least partially within the semiconductor material. The nanotemplate structure comprises a plurality of dielectric nanoscale features defining a plurality of nanoscale windows. An air gap is disposed between at least a portion of one or more of the nanoscale features and the semiconductor material.
Abstract:
A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.