Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a sacrificial gate structure over a semiconductor substrate. A spacer is formed around the sacrificial gate structure and a dielectric material is deposited over the spacer and semiconductor substrate. The method includes selectively etching the spacer to form a trench between the sacrificial gate structure and the dielectric material. The trench is bounded by a trench surface upon which a replacement spacer material is deposited. The method merges an upper region of the replacement spacer material to enclose a void within the replacement spacer material.
Abstract:
One method includes forming first sidewall spacers adjacent opposite sides of a sacrificial gate structure and a gate cap layer, removing the gate cap layer and a portion of the first sidewall spacers to define reduced-height first sidewall spacers, forming second sidewall spacers, removing the sacrificial gate structure to thereby define a gate cavity, whereby a portion of the gate cavity is laterally defined by the second sidewall spacers, and forming a replacement gate structure in the gate cavity, wherein at least a first portion of the replacement gate structure is positioned between the second sidewall spacers. A device includes a gate structure positioned above the substrate between first and second spaced-apart portions of a layer of insulating material and a plurality of first sidewall spacers, each of which are positioned between the gate structure and on one of the first and second portions of the layer of insulating material.
Abstract:
One illustrative method disclosed herein includes forming a sacrificial gate structure above a fin, wherein the sacrificial gate structure is comprised of a sacrificial gate insulation layer, a layer of insulating material, a sacrificial gate electrode layer and a gate cap layer, forming a sidewall spacer adjacent opposite sides of the sacrificial gate structure, removing the sacrificial gate structure to thereby define a gate cavity that exposes a portion of the fin, and forming a replacement gate structure in the gate cavity. One illustrative device disclosed herein includes a plurality of fin structures that are separated by a trench formed in a substrate, a local isolation material positioned within the trench, a gate structure positioned around portions of the fin structures and above the local isolation material and an etch stop layer positioned between the gate structure and the local isolation material within the trench.
Abstract:
A method for preserving interlevel dielectric in a gate cut region includes recessing a dielectric fill to expose cap layers of gate structures formed in a device region and in a cut region and forming a liner in the recess on top of the recessed dielectric fill. The liner includes a material to provide etch selectivity to protect the dielectric fill. The gate structures in the cut region are recessed to form a gate recess using the liner to protect the dielectric fill from etching. A gate material is removed from within the gate structure using the liner to protect the dielectric fill from etching. A dielectric gap fill is formed to replace the gate material and to fill the gate recess in the cut region.
Abstract:
An interconnect structure of an integrated circuit and a method of forming the same, the interconnect structure including: at least two metal lines laterally spaced from one another in a dielectric layer, the metal lines having a top surface below a top surface of the dielectric layer; a hardmask layer on an upper portion of sidewalls of the metal lines, the hardmask layer having a portion extending between the metal lines, the extending portion being below the top surface of the metal lines; and at least one fully aligned via on the top surface of a given metal line.
Abstract:
A method for forming self-aligned contacts includes patterning a mask between fin regions of a semiconductor device, etching a cut region through a first dielectric layer between the fin regions down to a substrate and filling the cut region with a first material, which is selectively etchable relative to the first dielectric layer. The first dielectric layer is isotropically etched to reveal source and drain regions in the fin regions to form trenches in the first material where the source and drain regions are accessible. The isotropic etching is super selective to remove the first dielectric layer relative to the first material and relative to gate structures disposed between the source and drain regions. Metal is deposited in the trenches to form silicide contacts to the source and drain regions.
Abstract:
Structures that include interconnects and methods of forming structures that include interconnects. A first interconnect is formed in a first trench in an interlayer dielectric layer, and a second interconnect in a second trench in the interlayer dielectric layer. The second interconnect is aligned along a longitudinal axis with the first interconnect. A dielectric region is arranged laterally arranged between the first interconnect and the second interconnect. The interlayer dielectric layer is composed of a first dielectric material, and the dielectric region is composed of a second dielectric material having a different composition than the first dielectric material.
Abstract:
The disclosure relates to methods of forming integrated circuit (IC) structures with a metal cap on a cobalt layer for source and drain regions of a transistor. An integrated circuit (IC) structure according to the disclosure may include: a semiconductor fin on a substrate; a gate structure over the substrate, the gate structure having a first portion extending transversely across the semiconductor fin; an insulator cap positioned on the gate structure above the semiconductor fin; a cobalt (Co) layer on the semiconductor fin adjacent to the gate structure, wherein an upper surface of the Co layer is below an upper surface of the gate structure; and a metal cap on the Co layer.
Abstract:
Structures including a vertical-transport field-effect transistor and a planar field-effect transistor, and methods of forming such structures. First and second sacrificial fins are respectively formed over first and second areas of the first device region. One or more semiconductor fins of the vertical-transport field-effect transistor are formed over the second device region. A first gate electrode of the planar field-effect transistor, which is arranged on the first device region between the first sacrificial fin and the second sacrificial fin, and a second gate electrode of the vertical-transport field-effect transistor, which is wrapped about the one or more semiconductor fins, are currently formed.